
Casl

The Common Algebraic Speci�cation Language

Summary

CoFI Document: CASL/Summary
Version: 1.0 22 July 1999

by The CoFI Task Group on Language Design

E-mail address for comments: co�-language@brics.dk

CoFI: The Common Framework Initiative
http://www.brics.dk/Projects/CoFI

This document is available on WWW�, and by FTPy.

The formatted body1 and appendices2 of this document are also available

separately, as is the list of all corrections and clari�cations3 made since the

initial release of this document in October 1998.

Copyright c1999 CoFI, The Common Framework Initiative for Algebraic
Speci�cation and Development.

Permission is granted to anyone to make or distribute verbatim copies of this

document, in any medium, provided that the copyright notice and permission

notice are preserved, and that the distributor grants the recipient permission

for further redistribution as permitted by this notice. Modi�ed versions may
not be made.

�http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary/
yftp://ftp.brics.dk/Projects/CoFI/Documents/CASL/Summary/
1ftp://ftp.brics.dk/Projects/CoFI/Documents/CASL/SemanticsSummary/
2ftp://ftp.brics.dk/Projects/CoFI/Documents/CASL/SyntaxSummary/
3http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary-Changes/

i

ii

Abstract

The language Casl is central to CoFI, the Common Framework Ini-
tiative for algebraic speci�cation and development. It is a reasonably
expressive algebraic language for specifying requirements and design
for conventional software. From Casl, simpler languages (e.g., for in-
terfacing with existing tools) are to be obtained by restriction, and
Casl is to be incorporated in more advanced languages (e.g., higher-
order). Casl strikes a balance between simplicity and expressiveness.
The main features of its design are as follows:

Many-sorted basic speci�cations in Casl denote classes of many-sorted
partial �rst-order structures: algebras where the functions are partial
or total, and where also predicates are allowed. Axioms are �rst-order
formulae built from equations and de�nedness assertions. Sort gener-
ation constraints can be stated. Datatype declarations are provided
for concise speci�cation of sorts together with some constructors and
(optional) selectors. Subsorted basic speci�cations provide moreover a
simple treatment of subsorts, interpreting subsort inclusion as embed-
ding.

Structured speci�cations allow translation, reduction, union, and ex-
tension of speci�cations. Extensions may be required to be free; ini-
tiality constraints are a special case. A simple form of generic speci-
�cations is provided, together with instantiation involving parameter-
�tting translations and views.

Architectural speci�cations express that the speci�ed software is to be
composed from separately-developed, reusable units with clear inter-
faces.

Finally, speci�cation libraries allow the (distributed) storage and re-
trieval of named speci�cations.

This document gives a detailed summary of the syntax and intended
semantics of Casl. It is intended for readers who are already familiar
with the main concepts of algebraic speci�cations.

Contents

I Basic Speci�cations 1

1 Basic Concepts 2

1.1 Signatures . 3

1.2 Models . 4

1.3 Sentences . 5

1.4 Satisfaction . 6

2 Basic Constructs 7

2.1 Signature Declarations . 8

2.1.1 Sorts . 9

2.1.2 Operations . 9

2.1.3 Predicates . 12

2.1.4 Datatypes . 13

2.1.5 Sort Generation . 16

2.2 Variables . 16

2.2.1 Global Variable Declarations 16

2.2.2 Local Variable Declarations 17

2.3 Axioms . 17

2.3.1 Quanti�cations . 18

2.3.2 Logical Connectives 19

2.3.3 Atomic Formulae . 20

2.3.4 Terms . 22

iii

CONTENTS iv

2.4 Identi�ers . 25

3 Subsorting Concepts 26

3.1 Signatures . 26

3.2 Models . 27

3.3 Sentences . 27

4 Subsorting Constructs 28

4.1 Signature Declarations . 28

4.1.1 Sorts . 28

4.1.2 Datatypes . 30

4.2 Axioms . 30

4.2.1 Atomic Formulae . 30

4.2.2 Terms . 31

II Structured Speci�cations 32

5 Structuring Concepts 33

6 Structuring Constructs 36

6.1 Structured Speci�cations . 36

6.1.1 Translations . 37

6.1.2 Reductions . 38

6.1.3 Unions . 39

6.1.4 Extensions . 39

6.1.5 Free Speci�cations 40

6.1.6 Local Speci�cations 41

6.1.7 Closed Speci�cations 41

6.2 Named and Parametrized Speci�cations 41

6.2.1 Speci�cation De�nitions 41

6.2.2 Speci�cation Instantiation 43

CONTENTS v

6.3 Views . 44

6.3.1 View De�nitions . 45

6.3.2 Fitting Views . 46

6.4 Symbol Lists and Mappings 47

6.4.1 Symbol Lists . 47

6.4.2 Symbol Mappings 47

6.5 Compound Identi�ers . 48

III Architectural Speci�cations 50

7 Architectural Concepts 51

8 Architectural Constructs 53

8.1 Unit Declarations and De�nitions 54

8.1.1 Unit Declarations . 54

8.1.2 Unit De�nitions . 55

8.2 Unit Speci�cations . 55

8.2.1 Unit Types . 56

8.2.2 Architectural Unit Speci�cations 56

8.2.3 Closed Unit Speci�cations 56

8.3 Unit Expressions . 56

8.3.1 Unit Terms . 57

IV Speci�cation Libraries 60

9 Library Concepts 61

10 Library Constructs 62

10.1 Local Libraries . 62

10.2 Distributed Libraries . 63

10.3 Library Names . 64

CONTENTS vi

Bibliography 65

Index 67

Appendices 69

A Abstract Syntax A{1

A.1 Basic Speci�cations . A{2

A.2 Basic Speci�cations with Subsorts A{4

A.3 Structured Speci�cations . A{5

A.4 Architectural Speci�cations A{6

A.5 Speci�cation Libraries . A{6

B Abbreviated Abstract Syntax B{1

B.1 Basic and Subsorted Speci�cations B{1

B.2 Structured Speci�cations . B{3

B.3 Architectural Speci�cations B{4

B.4 Speci�cation Libraries . B{4

C Concrete Syntax C{1

C.1 Introduction . C{1

C.2 Context-Free Syntax . C{2

C.2.1 Basic Speci�cations with Subsorts C{2

C.2.2 Structured Speci�cations C{5

C.2.3 Architectural Speci�cations C{6

C.2.4 Speci�cation Libraries C{6

C.3 Disambiguation . C{7

C.3.1 Precedence . C{7

C.3.2 Mix�x Grouping Analysis C{9

C.4 Lexical Syntax . C{10

C.5 Comments and Annotations C{12

CONTENTS vii

C.5.1 Comments . C{12

C.5.2 Annotations . C{13

C.6 Syntax for Literals . C{18

C.6.1 Literal syntax for numbers C{18

C.6.2 Literal syntax for strings C{19

C.6.3 Literal syntax for lists C{19

D Display Format D{1

D.1 Mathematical Symbols . D{1

D.2 Keywords . D{1

D.3 Identi�ers . D{2

D.4 Comments and Annotations D{2

E Examples E{1

E.1 Simple Structured Speci�cations E{2

E.1.1 Partial Order . E{2

E.1.2 Monoid . E{2

E.1.3 Nat . E{2

E.1.4 Elem . E{3

E.2 Generic Structured Speci�cations E{3

E.2.1 Set1 . E{3

E.2.2 Set2 . E{3

E.2.3 List . E{3

E.2.4 List with Order E{4

E.2.5 Nat List with Reverse Orders E{4

E.2.6 Non Empty List E{5

E.2.7 Path . E{5

E.2.8 File . E{6

E.2.9 List of List of List of Nat E{6

E.2.10 Nat List with Order E{6

CONTENTS viii

E.2.11 Bounded Nat List E{7

E.3 Architectural Speci�cations E{7

E.3.1 Num . E{7

E.3.2 Num Monoid . E{7

E.3.3 Add Num . E{8

E.3.4 Add Num Efficiently E{8

E.3.5 Efficient Add Num E{8

ABOUT THIS DOCUMENT ix

About this document

This document gives a detailed summary of the syntax and intended seman-
tics of Casl. It is intended for readers who are already familiar with the
main concepts of algebraic speci�cation. In general, it does not attempt to
motivate the design choices that have been taken; a rationale for the design
has been published separately [Mos97].

Structure

Part I (Chapters 1, 2, 3, 4) deals with basic speci�cations|�rst many-sorted,
then subsorted.

Part II (Chapters 5, 6) provides structured speci�cations, together with spec-

i�cation de�nitions, instantiations, and views.

Part III (Chapters 7, 8) summarizes so-called architectural and unit speci�ca-

tions, which, in contrast to structured speci�cations, prescribe the separate
development of composable, reusable implementation units.

Finally, Part IV (Chapters 9, 10) considers speci�cation libraries.

In each part, a chapter summarizing the main semantic concepts underlying
the kind of speci�cation concerned is followed by a chapter presenting the
(concrete and abstract) syntax of the associated Casl language constructs

and indicating their intended semantics.

The Index may facilitate locating the places in this document where termi-
nology is explained.

Appendix A provides a complete grammar for the abstract syntax of the
language, collecting the fragments that are given in the semantics summary.
Appendix B provides an abbreviated grammar (for the same abstract syn-
tax).

Appendix C provides a complete grammar for the concrete syntax of the
language, determining how Casl speci�cations are to be input. (The rela-
tionship between concrete and abstract syntax is mostly rather straightfor-
ward, and left implicit here.) Appendix D summarizes the intended display

format for Casl, showing how Casl speci�cations appear when displayed
after parsing.

Appendix E illustrates the syntax of Casl by giving some simple examples.
(A systematic library of useful speci�cations is to be provided separately.)

ABOUT THIS DOCUMENT x

Versions

Version 0.95 of this document was the summary of the complete Casl Ten-
tative Design [CoF96], available since December 1996.

CoFI Note S-1 [CoF97c] extended the cited Tentative Design Language
Summary with annotations concerning some questions and doubts raised
by the Semantics task group, in connection with their development of a
formal semantics for Casl, see CoFI Note S-4 [CoF97d]; CoFI Note S-1
has since been updated with an indication of how the issues were expected
to be resolved.

Version 0.96 was the �rst draft of the Summary of the CASL Proposed
Design, resolving almost all the issues that had been raised concerning the
Tentative Design.

Version 0.97 [CoF97b] incorporated some relatively minor enhancements to
the Proposed Design, suggested shortly after version 0.96 became available
(April 1997). CoFI Note S-6 [CoF97e] provided a completed draft semantics
for this version. Version 0.97 was reviewed by IFIP WG1.3 [IFI97], resulting
in tentative approval of the design.

Version 0.98 showed just which bits of Casl were subject to reconsideration,
in view of the referees' comments [CoF97a] and the recommendations made
by the CoFI Semantics Task Group [CoF97e].

Version 0.99 summarized what was almost the �nal Casl Design, now also
incorporating concrete syntax (the syntax of views and architectural speci-
�cations was, however, still somewhat tentative).

CoFI Note M-4 [BST98] provided an updated rationale for the design of
architectural speci�cations in Casl.

The present version 1.0 incorporates various minor adjustments to the details
of Casl, arising mainly from the work on the formal semantics of Casl and
on the implementation of parsers. It also incorporates a signi�cant revision
of the treatment of views.

The preliminary response by the Language Design task group to the IFIP
WG1.3 referees [CoF97a] is now to be expanded to clarify the extent to
which the referees' recommendations have been followed.

Comments on the various versions have been sent to the mailing list4 sub-
scribers, and are accessible in the mailing list archives5. The various lan-
guage design notes6 are also accessible.

4mailto:co�-language@brics.dk
5http://www.brics.dk/Projects/CoFI/Archives.html
6http://www.brics.dk/Projects/CoFI/Notes/L

ABOUT THIS DOCUMENT xi

Contributors

TheCoFI Language Design Task Group was formed at the founding meeting
of the Common Framework Initiative, in Oslo, September 1995. The work-
ing meetings held in Paris (November 1995), Munich (January 1996), Oxford
(March 1996), Paris (May 1996), Munich (July 1996), Edinburgh (Novem-
ber 1996), Paris (January and April 1997), Amsterdam (September 1997),
Bremen (January 1998), and �nally Lisbon (April 1998) helped to guide the
subsequent design of Casl. The following persons have participated in some
or all of these meetings: Egidio Astesiano, Hubert Baumeister, Jan Bergstra,
Gilles Bernot, Didier Bert, Mohammed Bettaz, Michel Bidoit, Mark van
den Brand, Maria Victoria Cengarle, Maura Cerioli, Christine Choppy,
Ole-Johan Dahl, Hans-Dieter Ehrich, Hartmut Ehrig, Jos�e Fiadeiro, Marie-
Claude Gaudel, Chris George, Joseph Goguen, Radu Grosu, Magne Haver-
aaen, Anne Haxthausen, Jim Horning, H�el�ene Kirchner, Kolyang, Hans-J�org
Kreowski, Bernd Krieg-Br�uckner, Pierre Lescanne, Christoph L�uth, Tom
Maibaum, Grant Malcolm, Karl Meinke, Till Mossakowski, Peter D. Mosses,
Peter Padawitz, Fernando Orejas, Olaf Owe, Gianna Reggio, Horst Reichel,
Don Sannella, Giuseppe Scollo, Amilcar Sernadas, Andrzej Tarlecki, Eelco
Visser, Fr�ed�eric Voisin, Eric Wagner, Micha l Walicki, and Martin Wirsing.

The acronym Casl for the Common Algebraic Speci�cation Language was
originally proposed by Christine Choppy.

This document has been developed by Peter D. Mosses, originally on the
basis of the design proposals and notes made available before the Munich
meeting in July 1996 and the agreements reached during that meeting. Its
preparation has been greatly assisted by the timely production of the min-
utes of several meetings by Christine Choppy.

Subsequent versions of this document have attempted to incorporate the
improvements suggested in various comments and notes from the following
persons: Egidio Astesiano, Hubert Baumeister, Jan Bergstra, Gilles Bernot,
Didier Bert, Michel Bidoit, Pietro Cenciarelli, Maria Victoria Cengarle,
Maura Cerioli, Christine Choppy, Ole-Johan Dahl, Marie-Claude Gaudel,
Chris George, Joseph Goguen, Radu Grosu, Anne Haxthausen, Jim Horn-
ing, H�el�ene Kirchner, Kolyang, Hans-J�org Kreowski, Bernd Krieg-Br�uckner,
Christoph L�uth, Till Mossakowski, Peter D. Mosses, Olaf Owe, Gianna Reg-
gio, Markus Roggenbach, Erik Saaman, Don Sannella, Andrzej Tarlecki,
Christophe Tronche, Eelco Visser, Fr�ed�eric Voisin, Micha l Walicki, Bjarke
Wedemeijer, Martin Wirsing, Uwe Wolter, and Alexandre Zamulin.

The design of the abstract syntax and semantics of Casl has been much
inuenced by the work of the CoFI Semantics task group on the formal
semantics of Casl, which has been produced mainly by Hubert Baumeis-

ABOUT THIS DOCUMENT xii

ter, Maura Cerioli, Anne Haxthausen, Till Mossakowski, Don Sannella, and
Andrzej Tarlecki.

The concrete syntax (input syntax and display format) of Casl has been de-
signed initially by Michel Bidoit, Christine Choppy, Bernd Krieg-Br�uckner,
and Fr�ed�eric Voisin, and coordinated by Peter D. Mosses. Feedback from
the development of various prototype parsers for Casl by Hubert Baumeis-
ter, Mark van den Brand, Kolyang, Till Mossakowski, Markus Roggenbach,
Axel Schairer, Christophe Tronche, Fr�ed�eric Voisin, and Bjarke Wedemeijer
has also contributed signi�cantly to the �nal concrete syntax design.

The coordinator of the Language Design task group is Bernd Krieg-
Br�uckner.

Part I

Basic Speci�cations

1

Chapter 1

Basic Concepts

First, before considering the particular concepts underlying Casl, here is a
brief reminder of how speci�cation frameworks in general may be formalized
in terms of so-called institutions [GB92] (some category-theoretic details are
omitted) and proof systems.

A basic speci�cation framework may be characterized by:

� a class Sig of signatures �, each determining the set of symbols j�j
whose intended interpretation is to be speci�ed, with morphisms be-
tween signatures;

� a class Mod(�) of models, with homomorphisms between them, for
each signature �;

� a set Sen(�) of sentences (or axioms), for each signature �;

� a relation j= of satisfaction, between models and sentences over the
same signature; and

� a proof system, for inferring sentences from sets of sentences.

A basic speci�cation consists of a signature � together with a set of sen-
tences from Sen(�). The signature provided for a particular declaration
or sentence in a speci�cation is called its local environment. It may be a
restriction of the entire signature of the speci�cation, e.g., determined by
an order of presentation for the signature declarations and the sentences
with linear visibility, where symbols may not be used before they have been
declared; or it may be the entire signature, reecting non-linear visibility.

The (loose) semantics of a basic speci�cation is the class of those models in
Mod(�) which satisfy all the speci�ed sentences. A speci�cation is said to
be consistent when there are some models that satisfy all the sentences, and

2

1.1. SIGNATURES 3

inconsistent when there are no such models. A sentence is a consequence of
a basic speci�cation if it is satis�ed in all the models of the speci�cation.

A signature morphism � : � ! �0 determines a translation function Sen(�)
on sentences, mapping Sen(�) to Sen(�0), and a reduct function Mod(�)
on models, mapping Mod(�0) to Mod(�).1 Satisfaction is required to be
preserved by translation: for all S 2 Sen(�);M 0 2Mod(�0),

Mod(�)(M 0) j= S () M 0 j= Sen(�)(S):

The proof system is required to be sound, i.e., sentences inferred from a
speci�cation are always consequences; moreover, inference is to be preserved
by translation.

Sentences of basic speci�cations may include constraints that restrict the
class of models, e.g., to reachable ones.

The rest of this chapter considers many-sorted basic speci�cations of the
Casl speci�cation framework, and indicates the underlying signatures, mod-
els, and sentences.2 Consideration of the extra features concerned with sub-
sorts is deferred to Chapter 3.

The syntax of the language constructs used for expressing many-sorted basic
speci�cations is described in Chapter 2; subsorting constructs are deferred
to Chapter 4. The abstract syntax of any well-formed basic speci�cation
determines a signature and a set of sentences, the models of which provide
the semantics of the basic speci�cation.

1.1 Signatures

A many-sorted signature � = (S;TF ;PF ; P) consists of:

� a set S of sorts;

� sets TFw;s, PFw;s, of total function symbols, respectively partial func-

tion symbols, such that TFw;s \ PFw;s = ;, for each function pro�le
(w; s) consisting of a sequence of argument sorts w 2 S� and a result

sort s 2 S (constants are treated as functions with no arguments);

� sets Pw of predicate symbols, for each predicate pro�le consisting of a
sequence of argument sorts w 2 S�.

1In fact Sig is a category, and Sen(:) and Mod(:) are functors. The categorial aspects
of the semantics of Casl are emphasized in its formal semantics [CoF97e].

2The choice of a particular proof system for Casl has been investigated, but not yet
decided.

1.2. MODELS 4

Constants and functions are also referred to as operations, following the
traditions of algebraic speci�cation.

Note that symbols used to identify sorts, operations, and predicates may be
overloaded, occurring in more than one of the above sets. To ensure that
there is no ambiguity in sentences at this level, however, function symbols f
and predicate symbols p are always quali�ed by pro�les when used, written
fw;s and pw respectively. (The language considered in Chapter 2 allows the
omission of such quali�cations when these are unambiguously determined
by the context.)

A many-sorted signature morphism � : (S;TF ;PF ; P) ! (S0;TF 0;PF 0; P 0)
consists of a mapping from S to S0, and for each w 2 S�; s 2 S, a mapping
between the corresponding sets of function, resp. predicate symbols. A par-
tial function symbol may be mapped also to a total function symbol, but
not vice versa.

1.2 Models

For a many-sorted signature � = (S;TF ;PF ; P) a many-sorted model M 2
Mod(�) is a many-sorted �rst-order structure consisting of a many-sorted

partial algebra:

� a non-empty carrier set sM for each sort s 2 S (let wM denote the
Cartesian product sM1 � � � � � sMn when w = s1 : : : sn),

� a partial function fM from wM to sM for each function symbol f 2
TFw;s or f 2 PFw;s, the function being required to be total in the
former case,

together with:

� a predicate pM � wM for each predicate symbol p 2 Pw.

A (weak) many-sorted homomorphism h from M1 to M2, with M1;M2 2
Mod(S;TF ;PF ; P), consists of a function hs : sM1 ! sM2 for each s 2 S
preserving not only the values of functions but also their de�nedness, and
preserving the truth of predicates.

Any signature morphism � : � ! �0 determines the many-sorted reduct of
each model M 0 2 Mod(�0) to a model M 2 Mod(�), de�ned by inter-
preting symbols of � in M in the same way that their images under � are
interpreted in M 0.

1.3. SENTENCES 5

1.3 Sentences

The many-sorted terms on a signature � = (S;TF ;PF ; P) and a set of
sorted, non-overloaded variables X are built from:

� variables from X;

� applications of quali�ed function symbols in TF [PF to argument
terms of appropriate sorts.

We refer to such terms as fully-quali�ed terms, to avoid confusion with the
terms of the language considered in Chapter 2, which allow the omission of
quali�cations and explicit sorts when these are unambiguously determined
by the context.

For a many-sorted signature � = (S;TF ;PF ; P) the many-sorted sentences

in Sen(�) are the usual closed many-sorted �rst-order logic formulae, built
from atomic formulae using quanti�cation (over sorted variables) and logical
connectives. An inner quanti�cation over a variable makes a hole in the
scope of an outer quanti�cation over the same variable, regardless of the
sorts of the variables. Implication may be taken as primitive (in the presence
of an always-false formula), the other connectives being regarded as derived.

The atomic formulae are:

� applications of quali�ed predicate symbols p 2 P to argument terms
of appropriate sorts;

� assertions about the de�nedness of fully-quali�ed terms;

� existential and strong equations between fully-quali�ed terms of the
same sort.

De�nedness assertions may be derived from existential equations using con-
junction, or regarded as applications of �xed predicates. Strong equations
may be derived from existential equations, using implication and conjunc-
tion; existential equations may be derived from conjunctions of strong equa-
tions and de�nedness assertions, or regarded as applications of �xed predi-
cates.

The sentences Sen(�) also include sort-generation constraints. Let � =
(S;TF ;PF ; P). A sort-generation constraint consists of (S0; F 0) with S0 � S
and F 0 � TF [PF . 3

3The translation of such constraints along signature morphisms adds a further compo-
nent, for technical reasons.

1.4. SATISFACTION 6

1.4 Satisfaction

The satisfaction of a sentence in a structure M is determined as usual by
the holding of its atomic formulae w.r.t. assignments of (de�ned) values to
all the variables that occur in them, the values assigned to variables of sort
s being in sM . The value of a term w.r.t. a variable assignment may be
unde�ned, due to the application of a partial function during the evaluation
of the term. Note, however, that the satisfaction of sentences is 2-valued (as
is the holding of open formulae with respect to variable assignments).

The application of a predicate symbol p to a sequence of argument terms
holds in M i� the values of all the terms are de�ned and give a tuple belong-
ing to pM . A de�nedness assertion concerning a term holds i� the value of
the term is de�ned (thus it corresponds to the application of a constantly-
true unary predicate to the term). An existential equation holds i� the
values of both terms are de�ned and identical, whereas a strong equation
holds also when the values of both terms are unde�ned.

The value of an occurrence of a variable in a term is that provided by the
given variable assignment. The value of the application of a function symbol
f to a sequence of argument terms is de�ned only if the values of all the
argument terms are de�ned and give a tuple in the domain of de�nedness
of fM , and then it is the associated result value.

A sort-generation constraint (S0; F 0) is satis�ed in a �-model M if the carri-
ers of the sorts in S0 are generated by the function symbols in F 0. I.e., every
element of each sort in S0 is the value of a term built from just these symbols
(possibly using variables of sorts not in S0, with appropriate assignments of
values to them).

Chapter 2

Basic Constructs

This chapter indicates the abstract and concrete syntax of the constructs
of many-sorted basic speci�cations, and describes their intended interpreta-
tion.

For an introduction to the form of grammar used here to de�ne the abstract
syntax of language constructs, see Appendix A, which also provides the com-
plete grammar de�ning the abstract syntax of the entire Casl speci�cation
language.

BASIC-SPEC ::= basic-spec BASIC-ITEMS*

A well-formed many-sorted basic speci�cation BASIC-SPEC in the Casl lan-
guage is written simply as a sequence of BASIC-ITEMS constructs:

BI1 . . .BIn

The empty basic speci�cation is not usually needed, but can be written `f g'.

This language construct determines a basic speci�cation within the underly-
ing many-sorted institution, consisting of a signature and a set of sentences
of the form described in Chapter 1. This signature and the class of models
over it that satisfy the set of sentences provide the semantics of the basic
speci�cation. Thus this chapter explains well-formedness of basic speci�-
cations, and the way that they determine the underlying signatures and
sentences, rather than directly explaining the intended interpretation of the
constructs.

While well-formedness of speci�cations in the language can be checked stati-
cally, the question of whether the value of a term that occurs in a well-formed
speci�cation is necessarily de�ned in all models may depend on the speci�ed
axioms (and it is not decidable in general).

7

2.1. SIGNATURE DECLARATIONS 8

BASIC-ITEMS ::= SIG-ITEMS | FREE-DATATYPE | SORT-GEN

| VAR-ITEMS | LOCAL-VAR-AXIOMS | AXIOM-ITEMS

A BASIC-ITEMS construct is always a list, written:

plural-keyword X1 ; . . . Xn ;

The plural-keyword may also be written in the singular (regardless of the
number of items), and the �nal `;' may be omitted.

Each BASIC-ITEMS construct determines part of a signature and/or some
sentences (except for VAR-ITEMS, which merely declares some global vari-
ables). The order of the basic items is generally signi�cant: there is linear
visibility of declared symbols and variables in a list of BASIC-ITEMS con-
structs (except within a list of datatype declarations). Verbatim repetition
of the declaration of a symbol is allowed, and does not a�ect the semantics
(some tools may however be able to locate and warn about such duplications,
in case they were not intentional).

A list of signature declarations and de�nitions SIG-ITEMS determines part of
a signature and possibly some sentences. A FREE-DATATYPE construct deter-
mines part of a signature together with some sentences. A sort-generation
construct SORT-GEN determines part of a signature, together with some sen-
tences including a corresponding sort generation constraint. A list of variable
declaration items VAR-ITEMS determines sorted variables that are implicitly
universally quanti�ed in the subsequent axioms of the enclosing basic spec-
i�cation; note that variable declarations do not contribute to the signature
of the speci�cation in which they occur. A LOCAL-VAR-AXIOMS construct re-
stricts the scope of the variable declarations to the indicated list of axioms.
(Variables may also be declared locally in individual axioms, by explicit
quanti�cation.) An AXIOM-ITEMS construct determines a set of sentences.

2.1 Signature Declarations

SIG-ITEMS ::= SORT-ITEMS | OP-ITEMS | PRED-ITEMS

| DATATYPE-ITEMS

A list SORT-ITEMS of sort declarations determines one or more sorts. A
list OP-ITEMS of operation declarations and/or de�nitions determines one
or more operation symbols, and possibly some sentences; similarly for a
list PRED-ITEMS of predicate declarations and/or de�nitions. Operation and
predicate symbols may be overloaded, being declared with several di�erent
pro�les in the same local environment. A list DATATYPE-ITEMS of datatype
declarations determines one or more sorts together with some constructor

2.1. SIGNATURE DECLARATIONS 9

and (optional) selector operations, and sentences de�ning the selector opera-
tions on the values given by the constructors with which they are associated.

2.1.1 Sorts

SORT-ITEMS ::= sort-items SORT-ITEM+

SORT-ITEM ::= SORT-DECL

A list SORT-ITEMS of sort declarations is written:

sorts SI1 ; . . . SIn ;

2.1.1.1 Sort Declarations

SORT-DECL ::= sort-decl SORT+

SORT ::= TOKEN-ID

A sort declaration SORT-DECL is written:

s1 ; : : : ; sn

It declares each of the sorts in the list s1 , . . . , sn .

2.1.2 Operations

OP-ITEMS ::= op-items OP-ITEM+

OP-ITEM ::= OP-DECL | OP-DEFN

A list OP-ITEMS of operation declarations and de�nitions is written:

ops OI1 ; . . . OIn ;

2.1.2.1 Operation Declarations

OP-DECL ::= op-decl OP-NAME+ OP-TYPE OP-ATTR*

OP-NAME ::= ID

An operation declaration OP-DECL is written:

f1 ; : : : ; fn : T ;A1 ; : : : ;Am

When the list A1 , . . . , Am is empty, the declaration is written simply:

f1 ; : : : ; fn : T

2.1. SIGNATURE DECLARATIONS 10

It declares each operation name f1 , . . . , fn as a total or partial operation,
with pro�le as speci�ed by the operation type T , and as having the attributes
A1 , . . . , Am (if any).

Operation Types

OP-TYPE ::= TOTAL-OP-TYPE | PARTIAL-OP-TYPE

TOTAL-OP-TYPE ::= total-op-type SORT-LIST SORT

PARTIAL-OP-TYPE ::= partial-op-type SORT-LIST SORT

SORT-LIST ::= sort-list SORT*

A total operation type TOTAL-OP-TYPE with some argument sorts is written:

s1 � : : :� sn ! s

When the list of argument sorts is empty, the type is simply written `s'. The
sign displayed as `�' may be input as `�' in ISO Latin-1, or as `*' in ASCII.
The sign displayed as `!' is input as `->'.

A partial operation type PARTIAL-OP-TYPE with some argument sorts is
written:

s1 � : : :� sn !? s

When the list of argument sorts is empty, the type is simply written `? s'.

The operation pro�le determined by the type has argument sorts s1 , . . . , sn
and result sort s.

Operation Attributes

OP-ATTR ::= BINARY-OP-ATTR | UNIT-OP-ATTR

BINARY-OP-ATTR ::= assoc-op-attr | comm-op-attr | idem-op-attr

UNIT-OP-ATTR ::= unit-op-attr TERM

Operation attributes assert that the operations being declared (which must
be binary) have certain common properties, which are characterized by
strong equations, universally quanti�ed over variables of the appropriate
sort. (This can also be used to add attributes to operations that have pre-
viously been declared without them.)

The attribute assoc-op-attr is written `assoc'. It asserts the associativity

of an operation f :

f (x ; f (y ; z)) = f (f (x ; y); z)

2.1. SIGNATURE DECLARATIONS 11

The attribute of associativity moreover implies a parsing annotation that
allows an in�x operation f of the form ` t ' (or ` ') to be iterated
without explicit grouping parentheses.

The attribute comm-op-attr is written `comm'. It asserts the commutativity
of an operation f :

f (x ; y) = f (y ; x)

The attribute idem-op-attr is written `idem'. It asserts the idempotency

of an operation f :

f (x ; x) = x

The attribute UNIT-OP-ATTR is written `unitT '. It asserts that the value of
the term T is the unit (left and right) of an operation f :

f (T ; x) = x ^ f (x ;T) = x

In practice, the unit T is normally a constant. In any case, T must not
contain any variables.

The declaration enclosing an operation attribute is ill-formed unless the
operation pro�le has exactly two argument sorts, both the same as the
result sort.

2.1.2.2 Operation De�nitions

OP-DEFN ::= op-defn OP-NAME OP-HEAD TERM

OP-HEAD ::= TOTAL-OP-HEAD | PARTIAL-OP-HEAD

TOTAL-OP-HEAD ::= total-op-head ARG-DECL* SORT

PARTIAL-OP-HEAD ::= partial-op-head ARG-DECL* SORT

ARG-DECL ::= arg-decl VAR+ SORT

VAR ::= SIMPLE-ID

A de�nition OP-DEFN of a total operation with some arguments is written:

f (v11 ; : : : ; v1m1
: s1 ; : : : ; vn1 ; : : : ; vnmn

: sn) : s = T

When the list of arguments is empty, the de�nition is simply written:

f : s = T

A de�nition OP-DEFN of a partial operation with some arguments is written:

f (v11 ; : : : ; v1m1
: s1 ; : : : ; vn1 ; : : : ; vnmn

: sn) :? s = T

When the list of arguments is empty, the de�nition is simply written:

f :? s = T

2.1. SIGNATURE DECLARATIONS 12

It declares the operation name f as a total, respectively partial operation,
with a pro�le having argument sorts s1 (m1 times), . . . , sn (mn times) and
result sort s. It also asserts the strong equation:

f (v11 ; : : : ; vnmn
) = T

universally quanti�ed over the declared argument variables (which must be
distinct, and are the only ones allowed in T), or just `f = T ' when the list
of arguments is empty.

In each of the above cases, the operation name f may occur in the term T ,
and may have any interpretation satisfying the equation|not necessarily
the least �xed point.

2.1.3 Predicates

PRED-ITEMS ::= pred-items PRED-ITEM+

PRED-ITEM ::= PRED-DECL | PRED-DEFN

PRED-NAME ::= ID

A list PRED-ITEMS of predicate declarations and de�nitions is written:

preds PI1 ; . . . PIn ;

2.1.3.1 Predicate Declarations

PRED-DECL ::= pred-decl PRED-NAME+ PRED-TYPE

A predicate declaration PRED-DECL is written:

p1 ; : : : ; pn : T

It declares each predicate name p1 , . . . , pn as a predicate, with pro�le as
speci�ed by the predicate type T .

Predicate Types

PRED-TYPE ::= pred-type SORT-LIST

A predicate type PRED-TYPE with some argument sorts is written:

s1 � : : :� sn

The sign displayed as `�' may be input as `�' in ISO Latin-1, or as `*' in
ASCII. When the list of argument sorts is empty, the type is written `()'.

The predicate pro�le determined by the type has argument sorts s1 , . . . , sn .

2.1. SIGNATURE DECLARATIONS 13

2.1.3.2 Predicate De�nitions

PRED-DEFN ::= pred-defn PRED-NAME PRED-HEAD FORMULA

PRED-HEAD ::= pred-head ARG-DECL*

A de�nition PRED-DEFN of a predicate with some arguments is written:

p(v11 ; : : : ; v1m1
: s1 ; : : : ; vn1 ; : : : ; vnmn

: sn) , F

When the list of arguments is empty, the de�nition is simply written:

p , F

The sign displayed as `,' is input as `<=>'.

It declares the predicate name p as a predicate, with a pro�le having argu-
ment sorts s1 (m1 times), . . . , sn (mn times). It also asserts the equivalence:

p(v11 ; : : : ; vnmn
) , F

universally quanti�ed over the declared argument variables (which must be
distinct, and are the only ones allowed in F), or just `p , F ' when the list
of arguments is empty. The predicate name p may occur in the formula F ,
and may have any interpretation satisfying the equivalence.

2.1.4 Datatypes

DATATYPE-ITEMS ::= datatype-items DATATYPE-DECL+

A list DATATYPE-ITEMS of datatype declarations is written:

types DD1 ; . . . DDn ;

The order of the datatype declarations is not signi�cant: there is non-linear
visibility of the declared sorts in a list (in contrast to the linear visibility
between the BASIC-ITEMS of a BASIC-SPEC, and between the SIG-ITEMS of
a SORT-GEN).

2.1.4.1 Datatype Declarations

DATATYPE-DECL ::= datatype-decl SORT ALTERNATIVE+

A datatype declaration DATATYPE-DECL is written:

s ::= A1 j : : : j An

2.1. SIGNATURE DECLARATIONS 14

It declares the sort s. For each alternative construct A1 , . . . , An , it declares
the speci�ed constructor and selector operations, and determines sentences
asserting the expected relationship between selectors and constructors. All
sorts used in an alternative construct must be declared in the local environ-
ment (which always includes the sort declared by the datatype declaration
itself).

Note that a datatype declaration allows models where the ranges of the
constructors are not disjoint, and where not all values are the results of
constructors. This looseness can be eliminated in a general way by use of
free extensions in structured speci�cations (as summarized in Part II), or by
use of free datatypes within basic speci�cations (see below). Unreachable
values can be eliminated also by the use of sort generation constraints.

Alternatives

ALTERNATIVE ::= TOTAL-CONSTRUCT | PARTIAL-CONSTRUCT

TOTAL-CONSTRUCT ::= total-construct OP-NAME COMPONENTS*

PARTIAL-CONSTRUCT ::= partial-construct OP-NAME COMPONENTS+

A total constructor TOTAL-CONSTRUCT with some components is written as:

f (C1 ; . . . ;Cn)

When the list of components is empty, the constructor is simply written `f '.

A partial constructor PARTIAL-CONSTRUCT with some components is written
as:

f (C1 ; . . . ;Cn)?

(Partial constructors without components are not expressible in datatype
declarations.)

The alternative declares f as an operation. Each component C1 , . . . , Cn

speci�es one or more argument sorts for the pro�le; the result sort is the
sort s declared by the enclosing datatype declaration.

Components

COMPONENTS ::= TOTAL-SELECT | PARTIAL-SELECT | SORT

TOTAL-SELECT ::= total-select OP-NAME+ SORT

PARTIAL-SELECT ::= partial-select OP-NAME+ SORT

A declaration TOTAL-SELECT of total selectors is written:

f1 ; : : : ; fn : s

2.1. SIGNATURE DECLARATIONS 15

A declaration PARTIAL-SELECT of partial selectors is written:

f1 ; : : : ; fn :? s

The remaining case is a component sort without any selector, simply written
`s '.

In the �rst two cases, it provides n components: the sort s is taken as
an argument sort n times for the constructor operation declared by the
enclosing alternative, and it declares f1 , . . . , fn as selector operations for the
respective components. In the �rst case, each selector operation is declared
as total, and in the second case, as partial. It also determines sentences that
de�ne the value of each selector on the values given by the constructor of
the enclosing alternative.

In the last case, it provides the sort s only once as an argument sort for the
constructor of the enclosing alternative, and it does not declare any selector
operation for that component.

Note that when there is more than one alternative construct in a datatype
declaration, selectors are usually partial, and must therefore be declared as
such; their values on constructs for which they are not declared as selectors
are left unspeci�ed. A list of datatype declarations must not declare a
function symbol both as a constructor and selector with the same pro�les.

2.1.4.2 Free Datatype Declarations

FREE-DATATYPE ::= free-datatype DATATYPE-ITEMS

A list FREE-DATATYPE of free datatype declarations is written:

free types DD1 ; . . . DDn ;

This construct is only well-formed when all the constructors declared by
the datatype declarations are total. Moreover, the constructors and selec-
tors must be distinct (as quali�ed symbols) from each other and from the
operations declared in the local environment.

The free datatype declarations declare the same sorts, constructors, and se-
lectors as ordinary datatype declarations. Apart from the sentences that
de�ne the values of selectors, the free datatype declarations determine addi-
tional sentences requiring that the constructors are injective, that the ranges
of constructors of the same sort are disjoint, that all the declared sorts are
generated by the constructors, and that the value of applying a selector to
a constructor for which it has not been declared is always unde�ned. (The
sentences ensure that the models, if any, are the same as for a free extension

2.2. VARIABLES 16

with the datatype declarations, provided that the sorts and quali�ed opera-
tion symbols declared by the datatype declaration are not already declared
in the local environment.)

When the alternatives of a free datatype declaration are all constants, the
declared sort corresponds to an (unordered) enumeration type.

2.1.5 Sort Generation

SORT-GEN ::= sort-gen SIG-ITEMS+

A sort generation SORT-GEN is written:

generated f SI1 . . . SIn g;

When the list of SIG-ITEMS is a single DATATYPE-ITEMS construct, writing
the grouping signs is optional:

generated types DD1 ; . . . DDn ;

(The terminating `;' is optional in both cases.)

It determines the same elements of signature and sentences as SI1 , . . . , SIn ,
together with a corresponding sort generation constraint sentence: all the
declared sorts of SI1 , . . . , SIn are required to be generated by all the declared
operations|but excluding operations declared as selectors by datatype dec-
larations. A SORT-GEN is ill-formed if it does not declare any sorts.

2.2 Variables

Variables for use in terms may be declared globally, locally, or with explicit
quanti�cation. Globally or locally declared variables are implicitly univer-
sally quanti�ed in subsequent axioms of the enclosing basic speci�cation.
Variables are not included in the declared signature.

Note that universal quanti�cation over a variable that does not occur free in
an axiom is semantically irrelevant, due to the assumption that all carriers
are non-empty.

2.2.1 Global Variable Declarations

VAR-ITEMS ::= var-items VAR-DECL+

A list VAR-ITEMS of variable declarations is written:

2.3. AXIOMS 17

vars VD1 ; . . . VDn ;

Note that local variable declarations are written in a similar way, but fol-
lowed directly by a bullet `�' instead of the optional semicolon.

VAR-DECL ::= var-decl VAR+ SORT

VAR ::= SIMPLE-ID

A variable declaration VAR-DECL is written:

v1 ; : : : ; vn : s

It declares the variables v1 , . . . , vn of sort s for use in subsequent axioms,
but it does not contribute to the declared signature.

The scope of a global variable declaration is the subsequent axioms of the
enclosing basic speci�cation; a later declaration for a variable with the same
identi�er overrides the earlier declaration (regardless of whether the sorts of
the variables are the same). A global declaration of a variable is equivalent to
adding a universal quanti�cation on that variable to the subsequent axioms
of the enclosing basic speci�cation.

2.2.2 Local Variable Declarations

LOCAL-VAR-AXIOMS ::= local-var-axioms VAR-DECL+ AXIOM+

A localization LOCAL-VAR-AXIOMS of variable declarations to a list of axioms
is written:

vars VD1 ; : : : ;VDn � F1 : : : � Fm ;`

The sign displayed as `�' may be input as `�' in ISO Latin-1, or as `.' in
ASCII.

It declares variables for local use in the axioms F1 , . . . , Fm , but it does
not contribute to the declared signature. A local declaration of a variable
is equivalent to adding a universal quanti�cation on that variable to all the
indicated axioms.

2.3 Axioms

AXIOM-ITEMS ::= axiom-items AXIOM+

AXIOM ::= FORMULA

A list AXIOM-ITEMS of axioms is written:

axioms F1 ; . . . Fn ;

2.3. AXIOMS 18

Each well-formed axiom determines a sentence of the underlying basic spec-
i�cation (closed by universal quanti�cation over all declared variables).

FORMULA ::= QUANTIFICATION | CONJUNCTION | DISJUNCTION

| IMPLICATION | EQUIVALENCE | NEGATION | ATOM

A formula is constructed from atomic formulae of the form ATOM using quan-
ti�cation and the usual logical connectives.

Keywords in formulae and terms are displayed in the same font as identi�ers.

2.3.1 Quanti�cations

QUANTIFICATION ::= quantification QUANTIFIER VAR-DECL+ FORMULA

QUANTIFIER ::= universal | existential | unique-existential

A quanti�cation with the universal quanti�er is written:

8VD1 ; : : : ;VDn � F

The sign displayed as `8' is input as `forall'. The sign displayed as `�' may
be input as `�' in ISO Latin-1, or as `.' in ASCII.

A quanti�cation with the existential quanti�er is written:

9VD1 ; : : : ;VDn � F

A quanti�cation with the unique-existential quanti�er is written:

9!VD1 ; : : : ;VDn � F

The sign displayed as `9' is input as `exists'.

The �rst case is universal quanti�cation, holding when the body F holds
for all values of the quanti�ed variables; the second case is existential quan-
ti�cation, holding when the body F holds for some values of the quanti�ed
variables; and the last case is unique existential quanti�cation, abbreviat-
ing a formula that holds when the body F holds for unique values of the
quanti�ed variables.

The formula 8VD1 ; : : : ;VDn � F is equivalent to 8VD1 � : : : 8VDn � F ; and
8v1 ; : : : ; vn : s � F is equivalent to 8v1 : s � : : : 8vn : s � F . Similarly for
the other quanti�ers. The scope of a variable declaration in a quanti�cation
is the component formula F , and an inner declaration for a variable with
the same identi�er as in an outer declaration overrides the outer declaration
(regardless of whether the sorts of the variables are the same). Note that
the body of a quanti�cation extends as far as possible.

2.3. AXIOMS 19

2.3.2 Logical Connectives

These formulae determine the usual logical connectives on the sub-formulae.
Conjunction and disjunction apply to lists of two or more formulae; they
both have weaker precedence than negation. When mixed, they have to be
explicitly grouped, using parentheses `(: : :)'.

Both implication (which may be written in two di�erent ways) and equiva-
lence have weaker precedence than conjunction and disjunction. When the
`forward' version of implication is iterated, it is implicitly grouped to the
right; the `backward' version is grouped to the left. When these constructs
are mixed, they have to be explicitly grouped.

2.3.2.1 Conjunction

CONJUNCTION ::= conjunction FORMULA+

A conjunction is written:

F1 ^ : : : ^ Fn

The sign displayed as `^' is input as `/\'.

2.3.2.2 Disjunction

DISJUNCTION ::= disjunction FORMULA+

A disjunction is written:

F1 _ : : : _ Fn

The sign displayed as `_' is input as `\/'.

2.3.2.3 Implication

IMPLICATION ::= implication FORMULA FORMULA

An implication is written:

F1) F2

The sign displayed as `)' is input as `=>'. An implication may also be
written in reverse order:

F2 if F1

2.3. AXIOMS 20

2.3.2.4 Equivalence

EQUIVALENCE ::= equivalence FORMULA FORMULA

An equivalence is written:

F1 , F2

The sign displayed as `,' is input as `<=>'.

2.3.2.5 Negation

NEGATION ::= negation FORMULA

A negation is written:

:F1

The sign displayed as `:' may be input as `:' in ISO Latin-1, or as `not' in
ASCII.

2.3.3 Atomic Formulae

ATOM ::= TRUTH | PREDICATION | DEFINEDNESS

| EXISTL-EQUATION | STRONG-EQUATION

An atomic formula ATOM is well-formed (with respect to the local environ-
ment and variable declarations) if it is well-sorted and expands to a unique
atomic formula for constructing sentences. The notions of when an atomic
formula is well-sorted, of when a term is well-sorted for a particular sort,
and of the expansions of atomic formulae and terms, are indicated below for
the various constructs.

Due to overloading of predicate and/or operation symbols, a well-sorted
atomic formula or term may have several expansions, preventing it from
being well-formed. Quali�cations on operation and predicate symbols may
be used to determine the intended expansion and make it well-formed; ex-
plicit sorts on arguments and/or results may also help to avoid unintended
expansions.

2.3.3.1 Truth

TRUTH ::= true-atom | false-atom

The atomic formulae true-atom and false-atom are written `true', `false'.

2.3. AXIOMS 21

They are always well-sorted, and expand to primitive sentences, such that
the sentence for `true' always holds, and the sentence for `false ' never holds.

2.3.3.2 Predicate Application

PREDICATION ::= predication PRED-SYMB TERMS

PRED-SYMB ::= PRED-NAME | QUAL-PRED-NAME

QUAL-PRED-NAME ::= qual-pred-name PRED-NAME PRED-TYPE

TERMS ::= terms TERM*

An application of a predicate symbol PS to some argument terms is written:

PS (T1 ; : : : ;Tn)

When PS is a mix�x identi�er, consisting of a sequence `t0 : : : tn ' of
tokens or spaces ti separated by place-holders ` ', the application may also
be written:

t0T1 t1 : : :Tn tn

When the predicate symbol is a constant p with no argument terms, its
application is simply written `p'.

A quali�ed predicate name QUAL-PRED-NAME with type T is written:

(pred p : T)

An unquali�ed predicate name PRED-NAME is simply written `p'.

The application of the predicate symbol is well-sorted when there is a dec-
laration of the predicate name (with the argument sorts indicated by the
indicated type in the case of a quali�ed predicate name) such that all the
argument terms are well-sorted for the respective argument sorts. It then ex-
pands to an application of the quali�ed predicate name to the fully-quali�ed
expansions of the argument terms for those sorts.

2.3.3.3 De�nedness

DEFINEDNESS ::= definedness TERM

A de�nedness formula is written:

def T

It is well-sorted when the term is well-sorted for some sort. It then expands
to a de�nedness assertion on the fully-quali�ed expansion of the term.

2.3. AXIOMS 22

2.3.3.4 Equations

EXISTL-EQUATION ::= existl-equation TERM TERM

STRONG-EQUATION ::= strong-equation TERM TERM

An existential equation EXISTL-EQUATION is written:

T1

e
= T2

The sign displayed as `
e
=' is input as `=e='.

A strong equation is written:

T1 = T2

An existential equation holds when the values of the terms are both de�ned
and equal; a strong equation holds also when the values of both terms are
unde�ned (thus the two forms of equation are equivalent when the values of
both terms are always de�ned).

An equation is well-sorted if there is a sort such that both terms are well-
sorted for that sort. It then expands to the corresponding existential or
strong equation on the fully-quali�ed expansions of the terms for that sort.

2.3.4 Terms

TERM ::= SIMPLE-ID | QUAL-VAR | APPLICATION

| SORTED-TERM | CONDITIONAL

A term is constructed from constants and variables by applications of op-
erations. All names used in terms may be quali�ed by the intended types,
and the intended sort of the term may be speci�ed. Note that the condition
of a conditional term is a formula, not a term.

2.3.4.1 Identi�ers

An unquali�ed simple identi�er in a term may be a variable or a constant,
depending on the local environment and the variable declarations. Either
is well-sorted for the sort speci�ed in its declaration; a variable expands to
the (sorted) variable itself, whereas a constant expands to an application
of the quali�ed symbol to the empty list of arguments. Note that when an
identi�er is declared both as variable and as a constant of the same sort,
unquali�ed use of the identi�er always makes the enclosing atomic formula
ill-formed.

2.3. AXIOMS 23

2.3.4.2 Quali�ed Variables

QUAL-VAR ::= qual-var VAR SORT

A quali�ed variable QUAL-VAR is written:

(var v : s)

It is well-sorted for the sort s .

2.3.4.3 Operation Application

APPLICATION ::= application OP-SYMB TERMS

OP-SYMB ::= OP-NAME | QUAL-OP-NAME

QUAL-OP-NAME ::= qual-op-name OP-NAME OP-TYPE

TERMS ::= terms TERM*

An application of an operation symbol OS to some argument terms is writ-
ten:

OS (T1 ; : : : ;Tn)

When OS is a mix�x identi�er, consisting of a sequence `t0 : : : tn ' of
tokens or spaces ti separated by place-holders ` ', the application may also
be written:

t0T1 t1 : : :Tn tn

When the operation symbol is a constant c with no argument terms, its
application is simply written `c'.

Declaring di�erent mix�x identi�ers that involve some common tokens may
lead to ambiguity, with di�erent candidate groupings of the same sequence
of tokens and terms. Such ambiguity prevents the enclosing atomic formula
from being well-formed, irrespective of the declared pro�les of the sym-
bols involved, and generally has to be eliminated by use of explicit grouping
parentheses. However, to allow the omission of some parentheses, in�x iden-
ti�ers are given weaker precedence than pre�x identi�ers, which in turn are
given weaker precedence than post�x identi�ers. (The mix�x identi�er ` '
is allowed, and regarded as an in�x, although this is unlikely to be the case in
higher-order extensions of Casl, since there juxtaposition will be reserved
for function application.)

In an application, a quali�ed operation name QUAL-OP-NAME with f quali�ed
by the operation type T is written:

(op f : T)

2.3. AXIOMS 24

When the quali�ed operation name is a constant c, its application (to no
arguments) is written (op c : T).

The application is well-sorted for some particular sort when there is a decla-
ration of the operation name (with the argument and result sorts indicated
by the type, if speci�ed) such that all the argument terms are well-sorted
for the respective argument sorts, and the result sort is the required sort.
It then expands to an application of the quali�ed operation name to the
fully-quali�ed expansions of the argument terms for those sorts.

2.3.4.4 Sorted Terms

SORTED-TERM ::= sorted-term TERM SORT

A sorted term is written:

T : s

It is well-sorted for some sort if the component term T is well-sorted for the
speci�ed sort s. It then expands to those of the fully-quali�ed expansions
of the component term that have the speci�ed sort.

2.3.4.5 Conditional Terms

CONDITIONAL ::= conditional TERM FORMULA TERM

A conditional term is written:

T1 when F else T2

It is well-sorted for some sort when both T1 and T2 are well-sorted for
that sort and F is a well-formed formula. The enclosing atomic formula
`A[T1 when F else T2]' expands to:

(A[T1] if F) ^ (A[T2] if :F)

When several conditional terms occur in the same atomic formula, the ex-
pansions are made in a �xed but arbitrary order (all orders yield equivalent
formulae).

2.4. IDENTIFIERS 25

2.4 Identi�ers

SIMPLE-ID ::= WORDS

ID ::= TOKEN-ID

TOKEN-ID ::= TOKEN

TOKEN ::= WORDS | DOT-WORDS | SIGNS | DIGIT | QUOTED-CHAR

The internal structure of identi�ers ID, used to identify sorts, operations,
and predicates, is insigni�cant in the abstract syntax of basic many-sorted
speci�cations. (ID is extended with compound identi�ers, whose structure
is signi�cant, in connection with generic speci�cations in Section 6.5.)

In concrete syntax, an identi�er may be written as a single token: either a
sequence of letters and/or digits|possibly mixed with single underscores ()
and/or primes ('), and possibly pre�xed by a dot (.)|or a sequence of other
printable ISO Latin-1 characters (excluding () ; , ` " %). Keywords,
and various other sequences that could be confused with separators, are not
allowed as tokens in the input syntax (however, display annotations may be
used to produce them when formatting identi�ers).

ID ::= ... | MIXFIX-ID

MIXFIX-ID ::= TOKEN-PLACES

TOKEN-PLACES ::= token-places TOKEN-OR-PLACE+

TOKEN-OR-PLACE ::= TOKEN | PLACE

An identi�er may also be a mix�x identi�er `t0 : : : tn ', consisting of a
list of tokens or spaces ti interspersed with place-holders, each place-holder
being written as a pair of underscores ` '. Mix�x identi�ers allow the use
of mix�x notation1 for application of operations and predicates to argument
terms in concrete syntax. A mix�x identi�er such as f is a di�erent symbol
from f. An application of the (unquali�ed) symbol f to x may be written
as f x, f(x), f (x); an application of f to x may only be written as
f(x). `Invisible' identi�ers, consisting entirely of two or more place-holders
(separated by spaces), are allowed.

Braces `f', `g' and square brackets `[', `]' are allowed as complete tokens
in identi�ers; however, any occurrences of these characters in a declared
identi�er must be balanced; e.g., `f[g]' and `f]' are not allowed.

An identi�er ID may be used simultaneously to identify di�erent kinds of
entities (sorts, operations, and predicates) in the same local environment.
It would not, however, be appropriate to use it simultaneously for constants
and variables of the same sort, since its (unquali�ed) use would then always
be ambiguous, making the enclosing formula ill-formed.

1Mix�x notation is so-called because it generalizes in�x, pre�x, and post�x notation
to allow arbitrary mixing of argument positions and identi�er tokens.

Chapter 3

Subsorting Concepts

This chapter introduces the signatures, models, and sentences character-
izing basic speci�cations with subsorts, extending Chapter 1. The notion
of satisfaction for subsorted speci�cations is essentially as for many-sorted
speci�cations.

The intuition behind the treatment of subsorts adopted here is to repre-
sent subsort inclusion by embedding (which is not required to be identity),
commuting, as usual in order-sorted approaches, with overloaded operation
symbols. In the language described in Chapter 4, however, no conditions
such as `regularity' are imposed on signatures. Instead, terms and sentences
that can be given di�erent parses (up to the commutativity between embed-
ding and overloaded symbols) are simply rejected as ill-formed.

3.1 Signatures

A subsorted signature � = (S;TF ;PF ; P;�) consists of a many-sorted sig-
nature (S;TF ;PF ; P) together with a pre-order � of subsort embedding on
the set S of sorts. � is extended pointwise to sequences of sorts.

For a subsorted signature, we de�ne overloading relations for operation and
predicate symbols. Let f 2 (TFw1;s1 [PFw1;s1) \ (TFw2;s2 [PFw2;s2) and
p 2 Pw1

\Pw2
. Two quali�ed operation symbols fw1;s1 and fw2;s2 are in the

overloading relation (written fw1;s1 �F fw2;s2) i� there exists a w 2 S� and
s 2 S such that w � w1; w2 and s1; s2 � s. Similarly, two quali�ed predicate
symbols pw1

and pw2
are in the overloading relation (written pw1

�P pw2
)

i� there exists a w 2 S� such that w � w1; w2. We say that two pro�les of a
symbol are in the overloading relation if the corresponding quali�ed symbols
are in overloading relation.

26

3.2. MODELS 27

Note that two pro�les of an overloaded constant declared with di�erent sorts
are in the overloading relation i� the two sorts have a common supersort.

A subsorted signature morphism � : � ! �0 is a many-sorted signature
morphism that preserves the subsort relation and the overloading relations.

With each subsorted signature � = (S;TF ;PF ; P;�) a many-sorted signa-
ture �# is associated, extending (S;TF ;PF ; P) for each pair of sorts s � s0

by a total embedding operation (from s into s0), a partial projection opera-
tion (from s0 onto s), and a membership predicate (testing whether values
in s0 are embeddings of values in s). The symbols used for embedding,
projection, and membership are chosen arbitrarily so as not to be in �.

Any subsorted signature morphism � : �1 ! �2 expands to a many-sorted
signature morphism �# : �#

1 ! �#
2 , preserving the symbols used for em-

bedding, projection, and membership.

3.2 Models

For a subsorted signature � the subsorted models are ordinary many-sorted
models for �# that satisfy the following properties (which can be formalized
as a set of conditional axioms):

� Embedding operations are total and 1-1; projection operations are
partial, and 1-1 when de�ned.

� The embedding of a sort into itself is the identity function.

� All compositions of embedding operations between the same two sorts
are equal functions.

� Embedding followed by projection is identity; projection followed by
embedding is included in identity.

� Membership in a subsort holds just when the projection to the subsort
is de�ned.

� Embedding is compatible with those operations and predicates that
are in the overloading relations.

3.3 Sentences

For a subsorted signature �, the subsorted sentences are the ordinary many-
sorted sentences (as de�ned in Chapter 1) for the associated many-sorted
signature �#.

Chapter 4

Subsorting Constructs

This chapter indicates the abstract and concrete syntax of the constructs of
subsorted basic speci�cations, and describes their intended interpretation,
extending what was provided for many-sorted speci�cations in Chapter 2.

A well-formed subsorted basic speci�cation BASIC-SPEC of the Casl lan-
guage determines a basic speci�cation of the underlying subsorted institu-
tion, consisting of a subsorted signature and a set of sentences of the form
described in Chapter 3. This signature and the class of models over it that
satisfy the set of sentences provide the semantics of the basic speci�cation.

4.1 Signature Declarations

4.1.1 Sorts

SORT-ITEM ::= ... | SUBSORT-DECL | ISO-DECL | SUBSORT-DEFN

4.1.1.1 Subsort Declarations

SUBSORT-DECL ::= subsort-decl SORT+ SORT

A subsort declaration SUBSORT-DECL is written:

s1 ; : : : ; sn < s

It declares all the sorts s1 , . . . , sn , and s, as well as the embedding of each
si as a subsort of s . The si must be distinct from s.

28

4.1. SIGNATURE DECLARATIONS 29

When a subsort declaration occurs in a sort generation construct, the em-
bedding and projection operations between the subsort(s) and the supersort
are treated as declared operations with regard to generation of sorts.

Introducing an embedding relation between two sorts may cause operation
symbols to become related by the overloading relation, so that values of
terms become equated when the terms are identical up to embedding.

4.1.1.2 Isomorphism Declarations

ISO-DECL ::= iso-decl SORT+

An isomorphism declaration ISO-DECL is written:

s1 = : : : = sn

It declares all the sorts s1 , . . . , sn , as well as their embeddings as subsorts of
each other. Thus the carriers for the sorts si are required to be isomorphic.
The si must be distinct.

4.1.1.3 Subsort De�nitions

SUBSORT-DEFN ::= subsort-defn SORT VAR SORT FORMULA

A subsort de�nition SUBSORT-DEFN is written:

s = f v : s 0 � F g

The sign displayed as `�' may be input as `�' in ISO Latin-1, or as `.' in
ASCII. It provides an explicit speci�cation of the values of the subsort s

of s 0, in contrast to the implicit speci�cation provided by using subsort
declarations and overloaded operation symbols.

The subsort de�nition declares the sort s ; it declares the embedding of s as
a subsort of s 0, which must already be declared in the local environment;
and it asserts that the values of s are precisely (the projection of) those
values of the variable v from s 0 for which the formula F holds.

The scope of the variable v is restricted to the formula F . Any other vari-
ables occurring in F must be explicitly declared by enclosing quanti�cations.

Note that the terms of sort s 0 cannot generally be used as terms of sort s.
But they can be explicitly projected to s , using a cast.

De�ned subsorts may be separately related using subsort (or isomorphism)
declarations|implication or equivalence between their de�ning formulae
does not give rise to any subsort relationship between them.

4.2. AXIOMS 30

4.1.2 Datatypes

Datatype declarations are unchanged, except for a new kind of alternative:

4.1.2.1 Alternatives

ALTERNATIVE ::= ... | SUBSORTS

SUBSORTS ::= subsorts SORT+

A subsorts alternative is written:

sorts s1 ; : : : ; sn

As with sort declarations, the plural keyword may be written in the singular
(regardless of the number of sorts).

The sorts si , which must be already declared in the local environment, are
declared to be embedded as subsorts of the sort declared by the enclosing
datatype declaration. (`sorts s1 ; : : : ; sn ' and `sort s1 j : : : j sort sn ' are
equivalent.)

In a free datatype declaration, all the sorts that are embedded in the de-
clared sort by the alternatives must have no common subsorts. When the
alternatives of a free datatype declaration are all subsorts, the declared sort
corresponds to the disjoint union of the subsorts. Finally, consider the set of
quali�ed constructor and selector symbols declared by the free datatype: no
element of this set may be in the overloading relation with any other element,
nor with the quali�ed operation symbols from the local environment.

4.2 Axioms

4.2.1 Atomic Formulae

ATOM ::= ... | MEMBERSHIP

As for many-sorted speci�cations, an atomic formula is well-formed (with re-
spect to the current declarations) if it is well-sorted and expands to a unique
atomic formula for constructing sentences of the underlying institution|but
now for subsorted speci�cations, uniqueness is required only up to an equiv-
alence on atomic formulae and terms. This equivalence is the least one
including fully-quali�ed terms that are the same up to pro�les of operation
symbols in the overloading relation �F and embedding, and fully-quali�ed
atomic formulae that are the same up to the pro�les of predicate symbols
in the overloading relation �P and embedding.

4.2. AXIOMS 31

The notions of when an atomic formula or term is well-sorted and of its
expansion are indicated below for the various subsorting constructs. Due
not only to overloading of predicate and/or operation symbols, but also to
implicit embeddings from subsorts into supersorts, a well-sorted atomic for-
mula may have several non-equivalent expansions, preventing it from being
well-formed. Quali�cations on operation and predicate symbols, or explicit
sorts on terms, may be used to determine the intended expansion (up to the
equivalence indicated above) and make the enclosing formula well-formed.

4.2.1.1 Membership

MEMBERSHIP ::= membership TERM SORT

A membership formula is written:

T 2 s

The sign displayed as `2' is input as `in'.

It is well-sorted if the term T is well-sorted for a supersort s 0 of the speci�ed
sort s . It expands to an application of the pre-declared predicate symbol for
testing s 0 values for membership in the embedding of s .

4.2.2 Terms

TERM ::= ... | CAST

4.2.2.1 Casts

CAST ::= cast TERM SORT

A cast term is written:

T as s

It is well-sorted if the term T is well-sorted for a supersort s 0 of s . It expands
to an application of the pre-declared operation symbol for projecting s 0 to s.

Term formation is also extended by letting a well-sorted term of a subsort s
be regarded as a well-sorted term of a supersort s 0 as well, which provides im-
plicit embedding. It expands to the explicit application of the pre-declared
operation symbol for embedding s into s 0. (There are no implicit projec-
tions.) Also a sorted-term T : s 0 expands to an explicit application of an
embedding, provided that the apparent sort s of the component term T is
a subsort of the speci�ed sort s 0.

Part II

Structured Speci�cations

32

Chapter 5

Structuring Concepts

A basic speci�cation, as described in Part I, consists essentially of a signature
� (declaring symbols) and a set of sentences (axioms or constraints) over �.
The semantics of a well-formed basic speci�cation is the speci�ed signature
� together with the class of all �-models that satisfy the speci�ed sentences.

A structured speci�cation is formed by combining speci�cations in various
ways, starting from basic speci�cations. For instance, speci�cations may
be united ; a speci�cation may be extended with further signature items
and/or sentences; parts of a signature may be hidden; the signature may
be translated to use di�erent symbols (with corresponding translation of
the sentences) by a signature morphism; and models may be restricted to
initial models. The abstract syntax of constructs in the Casl language for
presenting such structured speci�cations is described in Chapter 6.

The structuring concepts and constructs and their semantics do not depend
on a speci�c framework of basic speci�cations. This means that Part I of the
Casl language design is orthogonal to Part II (and also to Parts III and IV).
Therefore, Casl basic speci�cations as given in Part I can be restricted to
sublanguages or extended in various ways without the need to reconsider or
to change Parts II, III, and IV. 1

The semantics of a well-formed structured speci�cation is of the same form
as that of a basic speci�cation: a signature � together with a class of �-
models. Thus the structure of a speci�cation is not reected in its models: it
is used only to present the speci�cation in a modular style. (Speci�cation of
the architecture of models in the CoFI framework is addressed in Part III.)

Within a structured speci�cation, the current signature may vary. For in-

1The occasional reference to the subsort and overloading relations in Part II may
simply be ignored (or replaced by the identity relation) when the framework for basic
speci�cations is restricted so as not to include these features.

33

CHAPTER 5. STRUCTURING CONCEPTS 34

stance, when two speci�cations are united, the signature valid in the one
is generally di�erent from that valid in the other. The association between
symbols and their declarations as given by the valid signature is called the
local environment.

Parts of structured speci�cations, in contrast to arbitrary parts of basic
speci�cations, are potentially reusable|either verbatim, or with the adjust-
ment of some parameters. Speci�cations may be named, so that the reuse
of a speci�cation may be replaced by a reference to it through its name.
(Libraries of named speci�cations are explained in Part IV.) The current
association between names and the speci�cations that they reference is called
the global environment. Named speci�cations are implicitly closed, not de-
pending on a local environment of declared symbols. A reference to the
name of a speci�cation is equivalent to the referenced speci�cation itself,
provided that the closedness is explicitly ensured.

A named speci�cation may declare some parameters, the union of which
is extended by a body ; it is then called generic. A reference to a generic
speci�cation should instantiate it by providing, for each parameter, an ar-

gument speci�cation together with a �tting morphism from the parameter to
the argument speci�cation. Fitting may also be achieved by (explicit) use of
named views between the parameter and argument speci�cations. The union
of the arguments, together with the translation of the generic speci�cation
by an expansion of the �tting morphism, corresponds to a so-called push-
out construction|taking into account any explicit imports of the generic
speci�cation, which allow symbols used in the body to be declared also by
arguments.

The semantics of structured speci�cations involve signature morphisms and
the corresponding reducts on models. For instance, hiding some symbols in
a speci�cation corresponds to a signature morphism that injects the non-
hidden symbols into the original signature; the models, after hiding the sym-
bols, are the reducts of the original models along this morphism. Translation
goes the other way: the reducts of models over the translated signature back
along the morphism give the original models.

Given a signature � with symbols j�j, symbol sets and symbol mappings

determine signature morphisms as follows:

� A set of symbols in j�j determines the inclusion of the smallest sub-
signature of � that contains these symbols. (When an operation or
predicate symbol is included, all the sorts in its pro�le have to be
included too.)

It also determines the inclusion of the largest subsignature of � that
does not contain any of these symbols. (When a sort is not included,

CHAPTER 5. STRUCTURING CONCEPTS 35

no operation or predicate symbol with that sort in its pro�le can be
included either.)

� A mapping of symbols in j�j determines the morphism from � that
extends this mapping with identity maps for all the remaining symbols
in j�j. In the case that the signature morphism does not exist, the
enclosing construct is ill-formed.

� Given another signature �0, a mapping of symbols in j�j to symbols
in j�0j determines the unique signature morphism from � to �0 that
extends the given mapping, and then is the identity, as far as possible,
on common symbols of � and �0. (Mapping an operation or predicate
symbol implies mapping the sorts in the pro�le consistently.) In the
case that the signature morphism does not exist or is not unique, the
enclosing construct is ill-formed.

Chapter 6

Structuring Constructs

This chapter indicates the abstract and concrete syntax of the constructs
of structured speci�cations, and describes their intended interpretation, ex-
tending what was provided for basic (many-sorted and subsorted) speci�ca-
tions in Part I.

The summary below indicates when structured speci�cations are well-formed,
and how their signatures and classes of models are determined by those of
their component speci�cations. The interpretation is essentially based on
model classes|a \attening" reduction to sets of sentences is not possible,
in general (due to the presence of constructs such as hiding and freeness).

A structured speci�cation can only be well-formed when all its component
speci�cations are well-formed.

6.1 Structured Speci�cations

SPEC ::= BASIC-SPEC | TRANSLATION | REDUCTION

| UNION | EXTENSION | FREE-SPEC | LOCAL-SPEC

| CLOSED-SPEC

A translation allows the symbols declared by a speci�cation to be renamed; it
may also be used to require that some symbols have been declared, e.g., when
referencing a named speci�cation. A reduction allows symbols to be hidden;
for convenience, the remaining `revealed' symbols may be simultaneously
renamed. A union combines speci�cations such that when the declaration
of a particular symbol is common to some of the combined speci�cations,
its interpretation in a model has to be a common one too. An extension

may enrich models by declaring new symbols and asserting their properties,
and/or specialize the interpretation of already-declared symbols. A free

36

6.1. STRUCTURED SPECIFICATIONS 37

speci�cation FREE-SPEC is used to restrict interpretations to free extensions,
with initiality as a special case. A local speci�cation LOCAL-SPEC is used to
specify auxiliary symbols for local use, hiding them afterwards. A closed

speci�cation CLOSED-SPEC ensures that the local environment provided to a
speci�cation is empty.

When the above constructs are combined in the same speci�cation, the
grouping is determined unambiguously by precedence rules: translations
and reductions have the highest precedence, then come local speci�cations,
then unions, and �nally extensions have the lowest precedence. (Free spec-
i�cations generally involve explicit grouping, and their relative precedence
to the other constructs is irrelevant.) A di�erent grouping may always be
obtained by use of grouping braces: `f . . . g'.

A speci�cation SPEC may occur in a context (e.g., when it being named)
where it is required to be self-contained or closed, not depending on the
local environment at all. In that case, it determines a signature and a class
of models straightforwardly.

In structured speci�cations, however, a speci�cation SPEC may also occur
in a context where it is to extend other speci�cations, providing itself only
part of a signature. Then it is interpreted as a (partial) function mapping
signatures � to the corresponding extended signatures �0, together with
a partial function mapping model classes over � to model classes over �0

(when de�ned). The signature and model class for the self-contained case
above can be obtained by applying these functions to the empty signature
and to the model class of the empty speci�cation, respectively.

Translations and reductions in a SPEC are not allowed to a�ect symbols
that are already in the local environment that is being extended. The other
structuring constructs generalize straightforwardly from self-contained spec-
i�cations to extensions.

6.1.1 Translations

TRANSLATION ::= translation SPEC RENAMING

RENAMING ::= renaming SYMB-MAP-ITEMS+

A translation is written:

SP with SM

Symbol mappings SM are described in Section 6.4.

The symbols mapped by SM must be among those declared by SP . The
signature � given by SP and the mapping SM then determine a signature
morphism to a signature �0, as explained in Chapter 5. The morphism must

6.1. STRUCTURED SPECIFICATIONS 38

not a�ect the symbols already declared in the local environment, which is
passed unchanged to SP .

The class of models of the translation consists exactly of those models over
�0 whose reducts along the morphism are models of SP .

When the symbol mapping SM is simply a list of identity maps (which may
be abbreviated to a simple list of symbols) the only e�ect of the translation
on the semantics of SP is to require that the symbols listed are indeed
included in the signature given by SP , otherwise the translation is not well-
formed.

6.1.2 Reductions

REDUCTION ::= reduction SPEC RESTRICTION

RESTRICTION ::= HIDDEN | REVEALED

HIDDEN ::= hidden SYMB-ITEMS+

REVEALED ::= revealed SYMB-MAP-ITEMS+

A hiding reduction is written:

SP hide SL

A revealing reduction is written:

SP reveal SM

Symbol lists SL and symbol mappings SM are described in Section 6.4.

The symbols listed by SL, or mapped by SM , must be among those declared
by SP .

In the case of a hiding reduction, the signature � given by SP and the set
of symbols listed by SL determine the inclusion of the largest subsignature
�0 of � that does not contain any of the listed symbols, as explained in
Chapter 5. Note that hiding a sort entails hiding all the operations and
predicate symbols whose pro�les involve that sort.

In the case of a revealing reduction, the signature � given by SP and the
set of symbols mapped by SM determine the inclusion of the smallest sub-
signature �0 of � that contains all of the listed symbols, as explained in
Chapter 5. Note that revealing an operation or predicate symbol entails
revealing the sorts involved in its pro�le.

In both cases, the subsort embedding relation is inherited from that declared
by SP , and a model class M is given by the reducts of the models of SP
along the inclusion of �0 in �.

6.1. STRUCTURED SPECIFICATIONS 39

In the case of a hiding reduction, its model class is simply M. In the case
of a revealing reduction, however, the signature �0 and the mapping SM of
(all) the symbols in it determine a signature morphism to a signature �00, as
explained in Chapter 5. The class of models of the reduction then consists
exactly of those models over �00 whose reducts along this morphism are in
M.

A reduction must not a�ect the symbols already declared in the local envi-
ronment, which is passed unchanged to SP .

6.1.3 Unions

UNION ::= union SPEC+

A union is written:

SP1 and. . .and SPn

When the current local environment is empty, each SPi must determine
a complete signature �i. The signature of the union is obtained by the
ordinary union of the �i (not their disjoint union). Thus all (non-localized)
occurrences of a symbol in the SPi are interpreted uniformly (rather than
being regarded as homonyms for potentially di�erent entities).

The models are those models of the union signature for which the reduct
along the signature inclusion morphism from SPi is a model of SPi , for each
i = 1; : : : ; n.

When the current local environment is non-empty, each SPi must determine
an extension from it to a complete signature �i; then the resulting signa-
ture is determined as above. Similarly, models of the local environment are
extended to models of the SPi ; then the resulting models are determined
as above. This provides the required partial functions from signatures to
signatures, and from model classes to model classes.

6.1.4 Extensions

EXTENSION ::= extension SPEC+

An extension is written:

SP1 then. . . then SPn

6.1. STRUCTURED SPECIFICATIONS 40

When the current local environment is empty, SP1 must determine a com-
plete signature �1; otherwise, it must determine an extension from the local
environment to a complete signature �1. For i = 2; : : : ; n each SPi must
determine an extension from �i�1 to a complete signature �i. The signature
determined by the entire extension is then �n.

Similarly, SP1 determines a class of models M1 over �1. For i = 2; : : : ; n
each SPi determines the class Mi of those models over �i whose reducts to
�i�1 are in Mi�1. The class of models determined by the entire extension
is then Mn.

An annotation is to be provided for indicating that a series of extensions is
conservative, i.e., every model in Mi�1 is the reduct of some model in Mi,
for i = 2; : : : ; n.

6.1.5 Free Speci�cations

FREE-SPEC ::= free-spec SPEC

A free speci�cation FREE-SPEC is written:

free f SP g

Note that the speci�cation written:

free types DD1 ; . . . DDn ;

is parsed as a free datatype of a basic speci�cation, but it usually has the
same interpretation as the free structured speci�cation written:

free f types DD1 ; . . . DDn ; g

This equivalence holds at least in the framework for basic speci�cations given
in Part I, under some minor restrictions: in a datatype declaration with
more than one alternative, any selector that is declared as total for some
alternative must be declared as a total selector with the same result sort
for every other alternative; and the sorts and quali�ed operation symbols
declared by the datatype declaration must not be already declared in the
local environment.

When the current local environment is empty, SP must determine a com-
plete signature �; otherwise, it must determine an extension from the local
environment to a complete signature �. In both cases, � is the signature
determined by the free speci�cation.

When the current local environment is empty, the free speci�cation deter-
mines the class of initial models of SP ; otherwise, it determines the class of

6.2. NAMED AND PARAMETRIZED SPECIFICATIONS 41

models that are free extensions for SP of their own reducts to models of the
current local environment.

6.1.6 Local Speci�cations

LOCAL-SPEC ::= local-spec SPEC SPEC

A local speci�cation LOCAL-SPEC is written:

local SP1 within SP2

It is equivalent to writing:

f SP1 then SP2 g hide SY1 , . . . , SYn

where SY1 , . . . , SYn are all the symbols declared by SP1 that are not
already in the current local environment. Thus the symbols SY1 , . . . , SYn

are only for local use in (SP1 and) SP2 . The hiding must not a�ect symbols
that are declared only in SP2 (thus operation or predicate symbols declared
in SP2 should not have sorts declared by SP1 in their pro�les).

6.1.7 Closed Speci�cations

CLOSED-SPEC ::= closed-spec SPEC

A closed speci�cation CLOSED-SPEC is written:

closed f SP g

It determines the same signature and class of models as SP determines in
the empty local environment, thus ensuring the closedness of SP .

6.2 Named and Parametrized Speci�cations

Speci�cations are named by speci�cation de�nitions, and referenced by use
of the name. A named speci�cation may also have some parameters, which
have to be instantiated when referencing the speci�cation.

6.2.1 Speci�cation De�nitions

SPEC-DEFN ::= spec-defn SPEC-NAME GENERICITY SPEC

GENERICITY ::= genericity PARAMS IMPORTED

PARAMS ::= params SPEC*

6.2. NAMED AND PARAMETRIZED SPECIFICATIONS 42

IMPORTED ::= imported SPEC*

A generic speci�cation de�nition SPEC-DEFN with some parameters and some
imports is written:

spec SN [SP1] . . . [SPn] given SP 00
1

, . . . , SP 00
m

=
SP

end

When the list of imports SP 00
1

, . . . , SP 00
m

is empty, the de�nition is written:

spec SN [SP1] . . . [SPn] =
SP

end

When the list of parameters SP1 , . . . , SPn is empty, the de�nition merely
names a speci�cation and is simply written:

spec SN =
SP

end

The terminating `end' keyword is optional.

It de�nes the name SN to refer to the speci�cation that has parameter
speci�cations SP1 , . . . , SPn (if any), import speci�cations SP 00

1 , . . . , SP 00
m

(if any), and body speci�cation SP . This extends the global environment
(which must not already include a de�nition for SN).

The well-formedness and semantics of a generic speci�cation are essentially
as for the imports, extended by the union of the parameter speci�cations,
extended by the body:

f SP 00
1 and. . . and SP 00

m g then f SP1 and. . .and SPn g then SP

The local environment given to the de�ned speci�cation is empty, i.e., the
above speci�cation is implicitly closed. The di�erence between declaring
parameters and leaving them implicit in an extension is that each parameter
has to be provided with a �tting argument speci�cation in all references to
the speci�cation name SN . The declared parameters show just which parts
of the generic speci�cation are intended to vary between di�erent references
to it. The imports, in contrast, are �xed, and common to the parameters,
body, and arguments.

N.B. When a declared parameter happens to be merely a speci�cation name,
it always must refer to an existing speci�cation de�nition in the global
environment|it does not declare a local name for an argument speci�cation.

6.2. NAMED AND PARAMETRIZED SPECIFICATIONS 43

SPEC-NAME ::= SIMPLE-ID

A speci�cation name SPEC-NAME is normally displayed in a Small-Caps

font, and input in mixed upper and lower case.

6.2.2 Speci�cation Instantiation

SPEC ::= ... | SPEC-INST

SPEC-INST ::= spec-inst SPEC-NAME FIT-ARG*

An instantiation SPEC-INST of a generic speci�cation with some �tting ar-
gument speci�cations is written

SN [FA1]. . . [FAn]

When the list of �tting arguments FA1 , . . . , FAn is empty, the instantiation
is merely a reference to the name of a speci�cation that has no declared
parameters at all, and it is simply written `SN '. Note that the grouping
braces `f g', normally required when writing free (or closed) speci�cations,
may always be omitted around instantiations.

The instantiation refers to the speci�cation named SN in the global envi-
ronment, providing a �tting argument FAi for each declared parameter (in
the same order).

FIT-ARG ::= FIT-SPEC

FIT-SPEC ::= fit-spec SPEC SYMB-MAP-ITEMS*

A �tting argument speci�cation FIT-SPEC is written:

SP 0
i
�t SMi

When SMi is empty, the �tting argument speci�cation is simply written
SP 0

i
. Symbol mappings SM are described in Sections 6.4 and 6.5.

The signature �i given by the parameter speci�cation SPi , the signature
�0
i given by the corresponding argument speci�cation, and the symbol map-

ping SM determine a signature morphism from �i to �0
i, as explained in

Chapter 5. The �tting argument is well-formed only when the signature
morphism is de�ned, i.e., the �tting argument morphism is well-de�ned.
Note that mapping an operation or predicate symbol generally implies non-
identity mapping of the sorts in the pro�le.

When there is more than one parameter, the separate �tting argument mor-
phisms have to be compatible, and their union has to yield a single morphism
from the union of the parameters to the union of the arguments. Thus any
common parts of declared parameters have to be instantiated in the same

6.3. VIEWS 44

way, and it is pointless to declare the same parameter twice in a generic spec-
i�cation. (Generic speci�cations that require two similar but independent
parameters can be expressed by using a translation to distinguish between
the symbols in the signatures of the two parameters.)

Each �tting argument FAi is regarded as an extension of the union of the
imports (the current local environment is ignored). The �tting argument
morphism has to be identity on all symbols declared by the imports SP 00

1
,

. . . , SP 00
m of the generic speci�cation, if there are any.

Let SP 0 be the extension of the imports by the generic parameters and then
by the body of the speci�cation named SN :

f SP 00
1
and. . . and SP 00

m
g then f SP1 and. . .and SPn g then SP

Let FM be the morphism yielded by the �tting arguments FA1 , . . . , FAn ,
extended to a morphism applicable to the signature of SP 0 as explained
in Sections 6.4 and 6.5 (and written as a list of symbol maps). Then the
semantics of the well-formed instantiation SN [FA1]. . . [FAn] is the same as
that of the speci�cation:

f SP 0 with FM g and SP 0
1 and. . . and SP 0

n

where each SP 0
i

is the speci�cation of the corresponding �tting argument
FAi . Each model of an argument FAi (these are models of SP 0

i
reduced by

the signature morphism determined by SMi) is required to be a model of
the corresponding parameter SPi , otherwise the instantiation is unde�ned.
The instantiation is not well-formed if the result signature is not a push-out
of the body and argument signatures: if the translated body

f SP 0 with FM g

and the union of the argument speci�cations

SP 0
1 and. . .and SP 0

n

share any symbols, these symbols have to be translations (along FM) of
symbols that share in the extension of the imports by the generic parameters

f SP 00
1
and. . . and SP 00

m g then f SP1 and. . .and SPn g

Here, two sorts share if they are identical, and two function or predicate
symbols share if they are in the overloading relation.

6.3 Views

Views between speci�cations are named by view de�nitions, and referenced
by use of the name. A named view may also have some parameters, which

6.3. VIEWS 45

have to be instantiated when referencing the view.

6.3.1 View De�nitions

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE SYMB-MAP-ITEMS*

VIEW-TYPE ::= view-type SPEC SPEC

A view de�nition VIEW-DEFN with some generic parameters and some im-
ports is written:

view VN [SP1] . . . [SPn] given SP 00
1

, . . . , SP 00
m : SP to SP 0 =

SM
end

A view de�nition VIEW-DEFN with some generic parameters is written:

view VN [SP1] . . . [SPn] : SP to SP 0 =
SM

end

When the list of generic parameters is empty, the view de�nition is simply
written:

view VN : SP to SP 0 =
SM

end

The terminating `end' keyword is optional.

It declares the view name VN to have the type of speci�cation morphisms
from SP to SP 0, and de�nes it by the symbol mapping SM . Symbol map-
pings SM are described in Sections 6.4 and 6.5. The view de�nition is well-
formed only if the signature morphism determined by the symbol mapping
SM , as explained in Chapter 5, is de�ned. The view de�nition extends the
global environment (which must not already include a de�nition for VN).

Generic parameters in a view de�nition allow the same view to be instanti-
ated with di�erent �tting arguments, giving compositions of the morphism
de�ned by the view with other �tting morphisms. The source SP of the
view is not in the scope of the view parameters SP1 , . . . , SPn , and view
instantiation a�ects only the target of the generic view.

It is required that the reduct by the speci�cation morphism of each model
of the target SP 0 is a model of the source SP ; otherwise the semantics is
unde�ned.

6.3. VIEWS 46

VIEW-NAME ::= SIMPLE-ID

A view name VIEW-NAME is normally displayed in a Small-Caps font, and
input in mixed upper and lower case.

6.3.2 Fitting Views

FIT-ARG ::= ... | FIT-VIEW

FIT-VIEW ::= fit-view VIEW-NAME

A reference to a non-generic �tting argument view FIT-VIEW is simply writ-
ten:

view VN

It refers to the current global environment, and is well-formed as an ar-
gument for a parameter SPi only when the global environment includes a
view de�nition for VN of type from SP to SP 0, such that the signatures of
SP and of SPi are the same. The view de�nition then provides the �tting
morphism from the parameter SPi to the argument speci�cation given by
the target SP 0 of the view.

If the generic speci�cation being instantiated has imports, the �tting mor-
phism is then the union of the speci�cation morphism given by the view and
the identity morphism on the imports. The argument speci�cation is the
union of the target of the view and the imports.

Each model of SP is required to be a model of SPi , otherwise the instanti-
ation is unde�ned.

FIT-VIEW ::= ... | fit-view VIEW-NAME FIT-ARG+

A �tting argument view FIT-VIEW involving the instantiation of a generic
view to �tting arguments is written:

view VN [FA1]. . . [FAn]

It refers to the current global environment, and is well-formed only when
the global environment includes a generic view de�nition for VN with pa-
rameters that can be instantiated by the indicated �tting arguments FA1 ,
. . . , FAn to give a view of type from SP to SP 0, such that the signatures
of SP and of SPi are the same. As with non-generic views, each model of
SP is required to be a model of SPi , otherwise the instantiation is unde-
�ned. The instantiation of a generic view with some �tting arguments is not
well-formed if the instantiation of the target SP 0 of the view with the same
�tting arguments is not well-formed.

6.4. SYMBOL LISTS AND MAPPINGS 47

6.4 Symbol Lists and Mappings

6.4.1 Symbol Lists

Symbol lists are used in hiding reductions.

SYMB-ITEMS ::= symb-items SYMB-KIND SYMB+

SYMB-KIND ::= implicit | sorts-kind | ops-kind | preds-kind

SYMB ::= ID | QUAL-ID

QUAL-ID ::= qual-id ID TYPE

TYPE ::= OP-TYPE | PRED-TYPE

A list of symbols SYMB-ITEMS with implicit kinds SYMB-KIND is written sim-
ply:

SY1 , . . . , SYn

Overloaded operation symbols and predicate symbols may be disambiguated
by explicit quali�cation; when SYi is not quali�ed, the e�ect is as if all (sort,
operation, or predicate) symbols declared with the same name in the current
local environment are listed.

Optionally, the list may be sectioned into sub-lists by inserting the keywords
`sorts', `ops', `preds' (or their singular forms), which explicitly indicate
that the subsequent symbols are of the corresponding kind:

sorts s1 , . . . , ops f1 , . . . , preds p1 , . . .

As with signature declarations in basic speci�cations, there is no restriction
on the order of the various sections of the list.

A single sort occurring as a type in a quali�ed identi�er QUAL-ID is inter-
preted as a constant operation type or unary predicate type, as determined
by the latest keyword, or, when there is none, unambiguously by the local
environment.

The list determines a set of quali�ed symbols, obtained from the listed sym-
bols with reference to a given signature; the order in which symbols are
listed is not signi�cant (except regarding their position in relation to any
speci�ed kinds).

6.4.2 Symbol Mappings

Symbol mappings are used in translations, revealing reductions, �tting ar-
guments, and views.

6.5. COMPOUND IDENTIFIERS 48

SYMB-MAP-ITEMS ::= symb-map-items SYMB-KIND SYMB-OR-MAP+

SYMB-OR-MAP ::= SYMB | SYMB-MAP

SYMB-MAP ::= symb-map SYMB SYMB

A list of symbol maps SYMB-MAP-ITEMS with implicit kinds SYMB-KIND is
written simply:

SY1 7! SY 0
1
, . . . , SYn 7! SY 0

n

The sign displayed as 7̀!' is input as `|->'.

SYi 7! SY 0
i

denotes the map that takes the symbol SYi to the symbol
SY 0

i
. The mapped symbols in the list must be distinct. Overloaded op-

eration symbols and predicate symbols may be disambiguated by explicit
quali�cation; when SYi is not quali�ed, the e�ect is as if all (sort, oper-
ation, or predicate) symbols declared with the same name in the current
environment are mapped uniformly to SY 0

i
.

Optionally, the list may be sectioned into sub-lists by inserting the keywords
`sorts', `ops', `preds' (or their singular forms), which explicitly indicate
that the subsequent symbols are of the corresponding kind:

sorts s1 7! s 01 , . . . , ops f1 7! f 01 , . . . , preds p1 7! p 01 , . . .

As with signature declarations in basic speci�cations, there is no restriction
on the order of the various sections of the list.

An identity map `SYi 7! SYi ' may be simply written `SYi '. Thus a symbol
list may be regarded as a special case of a symbol mapping.

The list determines a set of quali�ed symbols, obtained from the �rst compo-
nents of the listed symbol maps with reference to a given signature, together
with a mapping of these symbols to quali�ed symbols obtained from the sec-
ond components of the listed symbol maps. The order in which symbol maps
are listed is not signi�cant (except regarding their position in relation to any
speci�ed kinds).

6.5 Compound Identi�ers

TOKEN-ID ::= ... | COMP-TOKEN-ID

MIXFIX-ID ::= ... | COMP-MIXFIX-ID

COMP-TOKEN-ID ::= comp-token-id TOKEN ID+

COMP-MIXFIX-ID ::= comp-mixfix-id TOKEN-PLACES ID+

This extension of the syntax of identi�ers for sorts, operations, and predi-
cates is of relevance to generic speci�cations. An ordinary compound iden-
ti�er COMP-TOKEN-ID is written `I[I1 ; : : : ; In]'; a mix�x compound identi�er

6.5. COMPOUND IDENTIFIERS 49

COMP-MIXFIX-ID is written by inserting `[I1 ; : : : ; In]' directly after the last
token of the identi�er. (Compound `invisible' identi�ers without any tokens
are not allowed.) Note that declaration of both compound identi�ers and
mix�x identi�ers as operation symbols in the same local environment may
give rise to ambiguity, when they involve overlapping sets of tokens.

The components Ii may (but need not) themselves identify sorts, operations,
or predicates that are speci�ed in the declared parameters of a generic spec-
i�cation.

When such a compound identi�er is used to name, e.g., a sort in the body of
a generic speci�cation, the translation determined by �tting arguments to
parameters applies to the components I1 ,. . . ,In as well. Thus instantiations
with di�erent arguments generally give rise to di�erent compound identi-
�ers for what would otherwise be the same sort, which avoids unintended
identi�cations when the instantiations are united.

E.g., a generic speci�cation of sequences of arbitrary elements might use
the simple identi�er Elem for a sort in the parameter, and a compound
identi�er Seq[Elem] for the sort of sequences in the body. Fitting various
argument sorts to Elem in di�erent instantiations then results in distinct
sorts of sequences.

Subsort embeddings between component sorts do not induce subsort embed-
dings between the compound sorts: when desired, these have to be declared
explicitly. For example, when Nat is declared as a subsort of Int, we do not

automatically get Seq[Nat] embedded as a subsort of Seq[Int] in signatures
containing all these sorts.

Instantiation, however, does preserve subsorts: if in a generic speci�cation
we have Elem declared as a subsort of Seq[Elem], where Elem is a param-
eter sort, then in the result of instantiation of Elem by Nat, one does get
Nat automatically declared as a subsort of Seq[Nat]. Compound identi�ers
must not be identi�ed through the identi�cation of components by the �t-
ting morphism. E.g., if the body of a generic speci�cation contains both
List[Elem1] and List[Elem2], the �tting morphism must not map both
Elem1 and Elem2 to Nat.

Higher-order extensions of Casl are expected to provide a more semantic
treatment of parametrized sorts, etc.

Part III

Architectural Speci�cations

50

Chapter 7

Architectural Concepts

The intention with architectural speci�cations is primarily to impose struc-
ture on models, expressing their composition from component units|and
thereby also a decomposition of the task of developing such models from re-
quirements speci�cations. This is in contrast to the structured speci�cations
summarized in Part II, where the speci�ed models have no more structure
than do those of the basic speci�cations summarized in Part I.

The component units may all be regarded as unit functions: functions with-
out arguments give self-contained units; functions with arguments use such
units in constructing further units. Note that a resulting unit may be needed
for use as an argument in more than one application.

The speci�cation of a unit function indicates the properties to be assumed
of the arguments, and the properties to be guaranteed of the result. Such
a speci�cation provides the appropriate interfaces for the development of
the function. In Casl, self-contained units are simply models as de�ned in
Part I, and their properties are expressed by ordinary (perhaps structured)
speci�cations.

Thus a unit function maps models of argument speci�cations to models of a
result speci�cation. A speci�cation of such functions can be simply a list of
the argument speci�cations together with the result speci�cation. Thinking
of argument and result speci�cations as types of models, a speci�cation of a
unit function may be regarded as a function type.

An entire architectural speci�cation is a collection of unit function speci�ca-
tions, together with a description of how the functions are to be composed
to give a resulting unit. A model of an architectural speci�cation is a collec-
tion of unit functions with the speci�ed types or de�nitions, together with
the result of composing them as described.

51

CHAPTER 7. ARCHITECTURAL CONCEPTS 52

The intention is that a unit function should actually make use of its argu-
ments. In particular, it should not re-implement the argument speci�cations.
This is ensured by requiring the unit function to be persistent : the reduct
of the result to each argument signature yields exactly the given arguments.

As a consequence, the result signature has to include each argument sig-

nature|any desired hiding has to be left to when functions are composed.
Moreover, since each symbol in the union of the argument signatures has
to be implemented the same way in the result as in each argument where
it occurs, the arguments must already have the same implementation of all
common symbols. Let us call such arguments compatible.

Hence the interpretation of the speci�cation of a unit function is as all per-
sistent functions from compatible tuples of models of the argument speci�ca-
tions to models of the result speci�cation. When composing such functions,
care must be taken to ensure that arguments are indeed compatible. Notice
that if two arguments have the same signature, the arguments must be iden-
tical. It is not possible to specify a function that should take two arguments
that implement the same signature independently|although one can get
the same e�ect, by renaming one or both of the argument signatures.

Chapter 8

Architectural Constructs

This chapter indicates the abstract and concrete syntax of the constructs of
architectural speci�cations, and describes their intended interpretation, ex-
tending what was provided for basic and structured speci�cations in Parts I
and II.

ARCH-SPEC-DEFN ::= arch-spec-defn ARCH-SPEC-NAME ARCH-SPEC

ARCH-SPEC ::= BASIC-ARCH-SPEC | ARCH-SPEC-NAME

An architectural speci�cation de�nition ARCH-SPEC-DEFN is written:

arch spec ASN =
ASP

end

where the terminating `end' keyword is optional.

It de�nes the name ASN to refer to the architectural speci�cation ASP , ex-
tending the global environment (which must not already include a de�nition
for ASN). The local environment given to ASP is empty.

ARCH-SPEC-NAME ::= SIMPLE-ID

An architectural speci�cation name ARCH-SPEC-NAME is normally displayed
in a Small-Caps font, and input in mixed upper and lower case.

A reference in an architectural speci�cation ARCH-SPEC to an architectural
speci�cation named ASN is simply written as the name itself `ASN '. It
refers to the the current global environment, and is well-formed only when
the global environment includes an architectural speci�cation de�nition for
ASN . The enclosing de�nition then merely introduces a synonym for a
previously-de�ned architectural speci�cation.

53

8.1. UNIT DECLARATIONS AND DEFINITIONS 54

BASIC-ARCH-SPEC ::= basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT

UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN

RESULT-UNIT ::= result-unit UNIT-EXPRESSION

A basic architectural speci�cation BASIC-ARCH-SPEC is written:

units UD1 ; . . . UDn ; result UE ;

where both the last two semicolons are optional.

It consists of a list of unit declarations and de�nitions UD1 , . . . , UDn ,
together with a unit expression UE describing how such units are to be
composed. A model of such an architectural speci�cation consists of a unit
for each UDi , and the composition of these units as described by UE .

8.1 Unit Declarations and De�nitions

The visibility of unit names in architectural speci�cations is linear: each
name has to be declared or de�ned before it is used in a unit expression; and
no unit name may be introduced more than once in a particular architectural
speci�cation. Note that declarations and de�nitions of units do not a�ect the
global environment: a unit may be referenced only within the architectural
speci�cation in which it occurs.

8.1.1 Unit Declarations

UNIT-DECL ::= unit-decl UNIT-NAME UNIT-SPEC UNIT-IMPORTED

UNIT-IMPORTED ::= unit-imported UNIT-TERM*

UNIT-NAME ::= SIMPLE-ID

A unit declaration UNIT-DECL is written:

UN : USP given UT1 ; : : : ;UTn

When the list UNIT-TERM* of unit terms is empty, it is simply written:

UN : USP

It provides not only a unit speci�cation USP but also a unit name UN ,
which is used for referring to the unit in subsequent unit expressions, so
that the same unit may be used more than once in a composition.

In addition, the UNIT-IMPORTED lists any units UT1 , . . . ,UTn that are im-
ported for the implementation of the declared unit (corresponding to imple-
menting a generic unit function and applying it only once, to the imported
units, the argument type of the generic function being merely the list of the

8.2. UNIT SPECIFICATIONS 55

signatures of the UTi). The unit speci�cation USP is treated as an exten-
sion of the signatures of the imported units, thus being given a non-empty
local environment, in general.

8.1.2 Unit De�nitions

UNIT-DEFN ::= unit-defn UNIT-NAME UNIT-EXPRESSION

A unit de�nition UNIT-DEFN is written:

UN = UE

It de�nes the name UN to refer to the unit resulting from the composition
described by the unit expression UE .

8.2 Unit Speci�cations

UNIT-SPEC-DEFN ::= unit-spec-defn SPEC-NAME UNIT-SPEC

UNIT-SPEC ::= UNIT-TYPE | SPEC-NAME | ARCH-UNIT-SPEC

| CLOSED-UNIT-SPEC

A unit speci�cation de�nition UNIT-SPEC-DEFN is written:

unit spec SN =
USP

end

where the terminating `end' keyword is optional.

It provides a name SN for a unit speci�cation USP . The unit speci�cation
may be a unit type. It may also be the name of another unit speci�cation
(in the context-free concrete syntax, this is indistinguishable from a refer-
ence to a named structured speci�cation in a constant unit type, but the
global environment determines how the name should be interpreted). It may
be an architectural speci�cation (either a reference to the de�ned name of
an architectural speci�cation, or an anonymous architectural speci�cation).
Finally, it may be an explicitly-closed unit speci�cation.

It de�nes the name SN to refer to the unit speci�cation USP , extending the
global environment (which must not already include a de�nition for SN).
The local environment given to USP is empty, i.e., the unit speci�cation is
implicitly closed.

8.3. UNIT EXPRESSIONS 56

8.2.1 Unit Types

UNIT-TYPE ::= unit-type SPEC* SPEC

A unit type is written:

SP1 � : : :� SPn ! SP

When the list SPEC* of argument speci�cations is empty, the unit type is
simply written `SP '.

A unit satis�es a unit type when it is a persistent function that maps com-
patible tuples of models of the argument speci�cations SP1 , . . . , SPn to
models of their extension by the result speci�cation SP .

8.2.2 Architectural Unit Speci�cations

ARCH-UNIT-SPEC ::= arch-unit-spec ARCH-SPEC

An architectural unit speci�cation ARCH-UNIT-SPEC is written:

arch spec ASP

A unit satis�es `arch spec ASP ' when it is the result unit of some model
of ASP .

8.2.3 Closed Unit Speci�cations

CLOSED-UNIT-SPEC ::= closed-unit-spec UNIT-SPEC

A closed unit speci�cation CLOSED-UNIT-SPEC is written:

closed USP

It determines the same type as USP determines in the empty local environ-
ment, thus ensuring the closedness of USP .

8.3 Unit Expressions

UNIT-EXPRESSION ::= unit-expression UNIT-BINDING* UNIT-TERM

UNIT-BINDING ::= unit-binding UNIT-NAME UNIT-SPEC

A unit expression with some unit bindings is written:

�UN1 : USP1 ; : : : ;UNn : USPn � UT

8.3. UNIT EXPRESSIONS 57

The sign displayed as `�' is input as `lambda'. The sign displayed as `�' may
be input as `�' in ISO Latin-1, or as `.' in ASCII. When the list of unit
bindings is empty, just the unit term `UT ' is written.

It describes a composition of units declared (or de�ned) in the enclosing
architectural speci�cation. The result unit is a function, mapping the argu-
ments speci�ed by the unit bindings (if any) to the unit described by the
unit term UT . The unit names UN1 , . . . , UNn for the arguments must
be distinct, and not include the names of units previously declared in the
enclosing architectural speci�cation.

The unit bindings for the arguments (which are like unit declarations but
with no possibility of importing other units) in a unit expression are for
(non-parameterized) units that are required to build the result, but are not
directly provided yet. This allows for compositions which express partial ar-
chitectural speci�cations that depend on additional units, and might be used
to instantiate the same composition for various realizations of the required
units.

8.3.1 Unit Terms

UNIT-TERM ::= UNIT-REDUCTION | UNIT-TRANSLATION | AMALGAMATION

| LOCAL-UNIT | UNIT-APPL

Unit terms provide counterparts to most of the constructs of structured
speci�cations: translations, reductions, amalgamations (corresponding to
unions), local unit de�nitions, and applications (corresponding to instanti-
ations).

Unit terms use the same notation as structured speci�cations|but with a
crucially di�erent semantics, however. This is easiest to notice when con-
sidering the di�erence between union and amalgamation as well as between
translation and unit translation. For units, static semantics requires that
enough sharing is ensured so that the constructs as applied to the given
units will always make sense and produce results. This is in contrast with
the constructs for structured speci�cations, where well-formed unions or
(non-injective) translations of consistent speci�cations might result in in-
consistencies.

Any sharing of symbols in a unit term must be supported by a sharing
of symbols in a common unit. (In the presence of subsorts, the notion of
sharing here is related to the overloading relation.)

Taking the unit type of each unit name from its declaration, the unit term
must be well-typed. All the constructs involved must get argument units
over the appropriate signatures.

8.3. UNIT EXPRESSIONS 58

8.3.1.1 Unit Translations

UNIT-TRANSLATION ::= unit-translation UNIT-TERM RENAMING

A unit translation is written:

UT R

where the renaming R is written `with SM ', and determines a mapping of
symbols, cf. Section 6.1.1.

It allows some of the unit symbols to be renamed. Any symbols that happen
to be shared by the renaming must be checked to originate from shared
symbols in some unit.

8.3.1.2 Unit Reductions

UNIT-REDUCTION ::= unit-reduction UNIT-TERM RESTRICTION

A unit-reduction is written:

UT R

where the restriction R is written `hide SL' or `reveal SM ', and deter-
mines a set of symbols, and in the latter case also a mapping of them,
cf. Section 6.1.2.

It allows parts of the unit to be hidden and other parts to be simultaneously
renamed.

8.3.1.3 Amalgamations

AMALGAMATION ::= amalgamation UNIT-TERM+

An amalgamation is written:

UT1 and. . . and UTn

It produces a unit that consists of the components of all the amalgamated
units put together. Compatibility of the unit terms must be ensured.

8.3.1.4 Local Units

LOCAL-UNIT ::= local-unit UNIT-DEFN+ UNIT-TERM

A local unit is written:

8.3. UNIT EXPRESSIONS 59

local UD1 ; . . . ; UDn ; within UT

where the �nal `;' may be omitted.

This allows for naming units that are locally de�ned for use in a unit term,
these units being intermediate results that are not to be visible in the models
of the enclosing architectural speci�cation.

8.3.1.5 Unit Applications

UNIT-APPL ::= unit-appl UNIT-NAME FIT-ARG-UNIT*

A unit application UNIT-APPL is written:

UN [FAU1]. . . [FAUn]

It refers to a generic unit named UN that has already been declared or
de�ned in the enclosing architectural speci�cation, providing a �tting argu-
ment FAUi for each declared parameter (in the same order).

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*

A �tting argument FAUi is written:

UT 0
i
�t SMi

When the symbol mapping SMi is empty, just the unit term UT 0
i is written.

The �tting argument �ts the argument unit given by the unit term UT 0
i

to
the corresponding formal argument for the generic unit via a signature mor-
phism determined by the symbol mapping SMi . The signature morphism is
obtained in the same way as for generic speci�cations. Unmapped symbols
are included unchanged. Of course, the signature of the actual argument
might coincide with the corresponding signature in the generic unit type, in
which case no extra �tting is needed, and the argument unit is passed to the
generic unit directly. The compatibility of the arguments must be ensured
(by checking that shared symbols originate from the same unit declaration).

Each �tting argument unit FAUi is required to be a model of the correspond-
ing argument speci�cation, otherwise the unit application is unde�ned.

Part IV

Speci�cation Libraries

60

Chapter 9

Library Concepts

Speci�cations may be named by de�nitions and collected in libraries. In
the context of a library, the (re)use of a speci�cation may be replaced by
a reference to it through its name. The current association between names
and the speci�cations that they reference is called the global environment ;
it may vary throughout a library: with linear visibility, as in Casl, the
global environment for a named speci�cation is determined exclusively by
the de�nitions that precede it. When overriding is forbidden, as in Casl,
each valid reference to a particular name refers to the same de�ned entity.

The local environment given to each named speci�cation in a library should
be independent of the other speci�cations in the library (in Casl, it is
empty). Thus any dependence between the speci�cations is always apparent
from the explicit references to the names of speci�cations.

A library may be located at a particular site on the Internet. The library
is referenced from other sites by a name which determines the location and
perhaps identi�es a particular version of the library. To allow libraries to
be relocated without this invalidating existing references to them, library
names may be interpreted relative to a global directory that maps names
to URLs. Libraries may also be referenced directly by their (relative or
absolute) URLs, independently of their registration in the global directory.

A library may incorporate the downloading of copies of named speci�cations
from (perhaps particular versions of) other libraries, whenever the library
is used. To ensure continuous access to speci�cations despite temporary
failures at a particular library site, registered libraries may be mirrored at
archive sites.

The semantics of a speci�cation library is the name of the library together
with a map taking each speci�cation name de�ned in it to the semantics of
that speci�cation. The initial global environment for the library is empty.

61

Chapter 10

Library Constructs

This chapter indicates the abstract and concrete syntax of the constructs of
speci�cation libraries, and describes their intended interpretation, extending
what was provided for basic, structured, and architectural speci�cations in
Parts I{III.

First, the constructs of local libraries are presented. Such libraries are not
dependent on other libraries. Then constructs for referencing distributed

libraries are added. Finally, the form and intended interpretation of library
names are explained.

10.1 Local Libraries

LIB-DEFN ::= lib-defn LIB-NAME LIB-ITEM* LIB-ITEM ::= SPEC-DEFN

| VIEW-DEFN | ARCH-SPEC-DEFN | UNIT-SPEC-DEFN

A library de�nition LIB-DEFN is written:

library LN LI1 . . .LIn

Each library item LIi starts with a distinctive keyword, and may be termi-
nated by an optional `end'.

The library de�nition provides a collection of speci�cation (and perhaps also
view) de�nitions. It is well-formed only when the de�ned names are distinct,
and not referenced until (strictly) after their de�nitions. The global envi-
ronment for each de�nition is that determined by the preceding de�nitions.
Thus a library in Casl provides linear visibility, and mutual or cyclic chains
of references are not allowed.

62

10.2. DISTRIBUTED LIBRARIES 63

The local environment for each de�nition is empty: the symbols declared by
the preceding speci�cations in the library are only made available by explicit
reference to the name of the speci�cation concerned.

Each speci�cation de�nition in a library must be self-contained (after resolv-
ing references to names de�ned in the current global environment), deter-
mining a complete signature|fragments of speci�cations cannot be named.

A local library de�nition determines a library name, together with a map
from names to the semantics of the named speci�cations.

10.2 Distributed Libraries

LIB-ITEM ::= ... | DOWNLOAD-ITEMS

DOWNLOAD-ITEMS ::= download-items LIB-NAME ITEM-NAME-OR-MAP+

ITEM-NAME-OR-MAP ::= ITEM-NAME | ITEM-NAME-MAP

ITEM-NAME-MAP ::= item-name-map ITEM-NAME ITEM-NAME

ITEM-NAME ::= SIMPLE-ID

The syntax of local libraries is here extended with a further sort of library
item, for use with distributed libraries. The DOWNLOAD-ITEMS construct is
written:

from LN get IN1 7! IN 0
1 ,. . . , INn 7! IN 0

n end

where the terminating `end' keyword is optional. An identity map `INn 7!INn '
may be simply written `INn '.

It speci�es which de�nitions to copy from the remote library named LN ,
changing the remote names INi to the local names IN 0

i
.

The semantics corresponds to having already replaced all references in the
downloaded de�nitions by the corresponding (closed) speci�cations; cyclic
chains of references via remote libraries are not allowed. The download items
show exactly which speci�cation names are added to the current global en-
vironment of the library in which they occur, allowing references to named
speci�cations to be checked locally (although not whether the kind of speci-
�cation to be downloaded from the remote library is consistent with its local
use).

10.3. LIBRARY NAMES 64

10.3 Library Names

LIB-NAME ::= LIB-ID | LIB-VERSION

LIB-VERSION ::= lib-version LIB-ID VERSION-NUMBER

VERSION-NUMBER ::= version-number NUMBER+

A library name LIB-NAME without a VERSION-NUMBER is written simply as
a library identi�er LI . A library name LIB-NAME with version numbers N1 ,
. . . , Nn is written:

LI version N1Nn

The lists of version numbers are ordered lexicographically on the basis of
the usual ordering between natural numbers.

The library name of a library de�nition determines how the library is to
be referenced from other libraries; its interpretation as a URL determines
the primary location of the library (any copies of a library are to retain the
original name).

When the name of a de�ned library is simply a library identi�er LIB-ID, it
must be changed to an explicit library version LIB-VERSION before de�ning
further versions of that library. A library identi�er without an explicit ver-
sion in a downloading construct always refers to the current version of the
identi�ed library: the one with the largest list of version numbers (which
is not necessarily the last-created version, due to the lexicographic ordering
on such lists).

LIB-ID ::= DIRECT-LINK | INDIRECT-LINK

DIRECT-LINK ::= direct-link URL

INDIRECT-LINK ::= indirect-link PATH

A direct link to a library is simply written as the URL of the library. The
location of a library is always a directory, giving access not only to the indi-
vidual speci�cations de�ned by the current version of the library but also to
previously-de�ned versions, various indexes, and perhaps other documenta-
tion.

An indirect link is written:

FI1 /. . . /FIn

where each �le identi�er FIi is a valid �le name, as for use in a path in a
URL. An indirect link is interpreted as a URL by the current global library
directory.

Bibliography

[BST98] Michel Bidoit, Don Sannella, and Andrzej Tarlecki. Architectural
speci�cations in Casl. Note M-4 (revised), in [CoF], July 1998.

[CoF] CoFI. The Common Framework Initiative for algebraic speci�ca-
tion and development, electronic archives. Notes and Documents
accessible by WWW1 and FTP2.

[CoF96] CoFI Language Design Task Group. Casl { The CoFI Alge-
braic Speci�cation Language (Tentative Design, version 0.95) {
Language Summary. Documents/Tentative/LanguageSummary,
in [CoF], December 1996.

[CoF97a] CoFI Language Design Task Group. Response to the Referee
Report on Casl. Documents/CASL/RefereeResponse, in [CoF],
August 1997.

[CoF97b] CoFI Language Design Task Group. Casl { The CoFI

Algebraic Speci�cation Language { Summary, version 0.97.
Documents/CASL/Summary-v0.97, in [CoF], May 1997.

[CoF97c] CoFI Semantics Task Group. Casl { The CoFI Algebraic Spec-
i�cation Language (Tentative Design, version 0.95) { Language
Summary, with annotations concerning questions and doubts.
Note S-1 (revised), in [CoF], April 1997.

[CoF97d] CoFI Semantics Task Group. Casl { The CoFI Algebraic Spec-
i�cation Language (Tentative Design, version 0.95) { Language
Summary, with annotations concerning the semantics of con-
structs. Note S-4, in [CoF], April 1997.

[CoF97e] CoFI Semantics Task Group. Casl { The CoFI Algebraic Speci-
�cation Language (version 0.97) { Semantics. Note S-6, in [CoF],
July 1997.

1http://www.brics.dk/Projects/CoFI
2ftp://ftp.brics.dk/Projects/CoFI

65

BIBLIOGRAPHY 66

[GB92] J. A. Goguen and R. M. Burstall. Institutions: abstract model
theory for speci�cation and programming. Journal of the ACM,
39(1):95{146, 1992.

[IFI97] IFIP WG 1.3. Referee Report on Casl. Docu-
ments/CASL/RefereeReport, in [CoF], June 1997.

[Mos97] Peter D. Mosses. CoFI: The Common Framework Initiative
for Algebraic Speci�cation and Development. In TAPSOFT

'97: Theory and Practice of Software Development, volume
1214 of LNCS, pages 115{137. Springer-Verlag, 1997. Docu-
ments/Tentative/Mosses97TAPSOFT, in [CoF].

[Mos98a] Till Mossakowski. Standard annotations for parsers and static
semantic checkers { a proposal. Note T-6 (revised), in [CoF],
September 1998.

[Mos98b] Peter D. Mosses. Formatting Casl speci�cations using LATEX.
Note C-2, in [CoF], June 1998.

[RM99] Markus Roggenbach and Till Mossakowski. Proposal of some an-
notations and literal syntax in Casl. Note L-11, in [CoF], March
1999.

[Sch99] Axel Schairer. Using standard tools to create lexers and parsers
for Casl. Note T-7, in [CoF], April 1999.

Index

architectural speci�cation, 51
argument sorts, 3
argument speci�cation, 34
associativity, 10
atomic formulae, 5
auxiliary, 37
axioms, 2

basic speci�cation, 2
body, 34

carrier set, 4
closed, 34, 37
commutativity, 11
compatible, 43, 52
composition, 51
consequence, 3
consistent, 2
constants, 3
constraints, 3
current signature, 33

decomposition, 51
de�nitions, 61
display annotations, 25
downloading, 61

enrich, 36
equivalence, 30
expansions, 20
extend, 37
extended, 33
extension, 36

�tting morphism, 34
free extensions, 37
free speci�cation, 36
fully-quali�ed terms, 5
function, 4

generated, 6
generic, 34
global directory, 61

global environment, 61

hidden, 33
homomorphisms, 2

idempotency, 11
imports, 34
inconsistent, 3
initial, 33
instantiate, 34
institutions, 2

libraries, 61
linear visibility, 2, 61
local environment, 2
local speci�cation, 37

many-sorted �rst-order structure,
4

many-sorted homomorphism, 4
many-sorted model, 4
many-sorted partial algebra, 4
many-sorted reduct, 4
many-sorted sentences, 5
many-sorted signature, 3
many-sorted signature morphism,

4
many-sorted terms, 5
mix�x identi�er, 25
mix�x notation, 25
models, 2
morphisms, 2

named, 61
non-linear visibility, 2, 13

operations, 4
overloaded, 4
overloading relations, 26

parameters, 34
partial, 4
partial function symbols, 3

67

INDEX 68

predicate, 4
presentation, 2
pro�le, 3
proof system, 2

quali�ed, 4

reduct, 3
reduction, 36
reference, 61
result sort, 3

satisfaction, 2
self-contained, 37
semantics, 2
sentences, 2
signature morphism, 3
signatures, 2
site, 61
sort-generation constraints, 5
sorts, 3
specialize, 36
structured speci�cation, 33
subsorted models, 27
subsorted sentences, 27
subsorted signature, 26
subsorted signature morphism, 27
symbol sets, 34
symbols, 2

token, 25
total function symbols, 3
translated, 33
translation, 3, 36

union, 36
unit (left and right), 11
unit functions, 51
united, 33

views, 34

well-formed, 7
well-sorted, 20

Appendices

69

Appendix A

Abstract Syntax

The abstract syntax is central to the de�nition of a formal language. It
stands between the concrete representations of documents, such as marks
on paper or images on screens, and the abstract entities, semantic relations,
and semantic functions used for de�ning their meaning.

The abstract syntax has the following objectives:

� to identify and separately name the abstract syntactic entities;

� to simplify and unify underlying concepts, putting like things with
like, and reducing unnecessary duplication.

There are many possible ways of constructing an abstract syntax, and the
choice of form is a matter of judgement, taking into account the somewhat
conicting aims of simplicity and economy of semantic de�nition.

The abstract syntax is presented as a set of production rules in which each
sort of entity is de�ned in terms of its subsorts:

SOME-SORT ::= SUBSORT-1 | ... | SUBSORT-n

or in terms of its constructor and components:

SOME-CONSTRUCT ::= some-construct COMPONENT-1 ... COMPONENT-n

The productions form a context-free grammar; algebraically, the nontermi-
nal symbols of the grammar correspond to sorts (of trees), and the terminal
symbols correspond to constructor operations. The notation COMPONENT* in-
dicates repetition of COMPONENT any number of times; COMPONENT+ indicates
repetition at least once. (These repetitions could be replaced by auxiliary
sorts and constructs, after which it would be straightforward to transform
the grammar into a Casl FREE-DATATYPE speci�cation.)

A{1

A.1. BASIC SPECIFICATIONS A{2

The context conditions for well-formedness of speci�cations are not deter-
mined by the grammar (these are considered as part of semantics).

The grammar here has the property that there is a sort for each construct
(although an exception is made for constant constructs with no components).
Appendix B provides an abbreviated grammar de�ning the same abstract
syntax. It was obtained by eliminating each sort that corresponds to a single
construct, when this sort occurs only once as a subsort of another sort.

The following nonterminal symbols correspond to lexical syntax, and are
left unspeci�ed in the abstract syntax: WORDS, DOT-WORDS, SIGNS, DIGIT,
DIGITS, NUMBER, QUOTED-CHAR, PLACE, URL, and PATH.

A.1 Basic Speci�cations

BASIC-SPEC ::= basic-spec BASIC-ITEMS*

BASIC-ITEMS ::= SIG-ITEMS | FREE-DATATYPE | SORT-GEN

| VAR-ITEMS | LOCAL-VAR-AXIOMS | AXIOM-ITEMS

SIG-ITEMS ::= SORT-ITEMS | OP-ITEMS | PRED-ITEMS

| DATATYPE-ITEMS

SORT-ITEMS ::= sort-items SORT-ITEM+

SORT-ITEM ::= SORT-DECL

SORT-DECL ::= sort-decl SORT+

OP-ITEMS ::= op-items OP-ITEM+

OP-ITEM ::= OP-DECL | OP-DEFN

OP-DECL ::= op-decl OP-NAME+ OP-TYPE OP-ATTR*

OP-TYPE ::= TOTAL-OP-TYPE | PARTIAL-OP-TYPE

TOTAL-OP-TYPE ::= total-op-type SORT-LIST SORT

PARTIAL-OP-TYPE ::= partial-op-type SORT-LIST SORT

SORT-LIST ::= sort-list SORT*

OP-ATTR ::= BINARY-OP-ATTR | UNIT-OP-ATTR

BINARY-OP-ATTR ::= assoc-op-attr | comm-op-attr | idem-op-attr

UNIT-OP-ATTR ::= unit-op-attr TERM

OP-DEFN ::= op-defn OP-NAME OP-HEAD TERM

OP-HEAD ::= TOTAL-OP-HEAD | PARTIAL-OP-HEAD

TOTAL-OP-HEAD ::= total-op-head ARG-DECL* SORT

PARTIAL-OP-HEAD ::= partial-op-head ARG-DECL* SORT

ARG-DECL ::= arg-decl VAR+ SORT

PRED-ITEMS ::= pred-items PRED-ITEM+

PRED-ITEM ::= PRED-DECL | PRED-DEFN

PRED-DECL ::= pred-decl PRED-NAME+ PRED-TYPE

PRED-TYPE ::= pred-type SORT-LIST

A.1. BASIC SPECIFICATIONS A{3

PRED-DEFN ::= pred-defn PRED-NAME PRED-HEAD FORMULA

PRED-HEAD ::= pred-head ARG-DECL*

DATATYPE-ITEMS ::= datatype-items DATATYPE-DECL+

DATATYPE-DECL ::= datatype-decl SORT ALTERNATIVE+

ALTERNATIVE ::= TOTAL-CONSTRUCT | PARTIAL-CONSTRUCT

TOTAL-CONSTRUCT ::= total-construct OP-NAME COMPONENTS*

PARTIAL-CONSTRUCT::= partial-construct OP-NAME COMPONENTS+

COMPONENTS ::= TOTAL-SELECT | PARTIAL-SELECT | SORT

TOTAL-SELECT ::= total-select OP-NAME+ SORT

PARTIAL-SELECT ::= partial-select OP-NAME+ SORT

FREE-DATATYPE ::= free-datatype DATATYPE-ITEMS

SORT-GEN ::= sort-gen SIG-ITEMS+

VAR-ITEMS ::= var-items VAR-DECL+

VAR-DECL ::= var-decl VAR+ SORT

LOCAL-VAR-AXIOMS ::= local-var-axioms VAR-DECL+ AXIOM+

AXIOM-ITEMS ::= axiom-items AXIOM+

AXIOM ::= FORMULA

FORMULA ::= QUANTIFICATION | CONJUNCTION | DISJUNCTION

| IMPLICATION | EQUIVALENCE | NEGATION | ATOM

QUANTIFICATION ::= quantification QUANTIFIER VAR-DECL+ FORMULA

QUANTIFIER ::= universal | existential | unique-existential

CONJUNCTION ::= conjunction FORMULA+

DISJUNCTION ::= disjunction FORMULA+

IMPLICATION ::= implication FORMULA FORMULA

EQUIVALENCE ::= equivalence FORMULA FORMULA

NEGATION ::= negation FORMULA

ATOM ::= TRUTH | PREDICATION | DEFINEDNESS

| EXISTL-EQUATION | STRONG-EQUATION

TRUTH ::= true-atom | false-atom

PREDICATION ::= predication PRED-SYMB TERMS

PRED-SYMB ::= PRED-NAME | QUAL-PRED-NAME

QUAL-PRED-NAME ::= qual-pred-name PRED-NAME PRED-TYPE

DEFINEDNESS ::= definedness TERM

EXISTL-EQUATION ::= existl-equation TERM TERM

STRONG-EQUATION ::= strong-equation TERM TERM

TERMS ::= terms TERM*

TERM ::= SIMPLE-ID | QUAL-VAR | APPLICATION

| SORTED-TERM | CONDITIONAL

QUAL-VAR ::= qual-var VAR SORT

APPLICATION ::= application OP-SYMB TERMS

OP-SYMB ::= OP-NAME | QUAL-OP-NAME

QUAL-OP-NAME ::= qual-op-name OP-NAME OP-TYPE

SORTED-TERM ::= sorted-term TERM SORT

CONDITIONAL ::= conditional TERM FORMULA TERM

A.2. BASIC SPECIFICATIONS WITH SUBSORTS A{4

SORT ::= TOKEN-ID

OP-NAME ::= ID

PRED-NAME ::= ID

VAR ::= SIMPLE-ID

SIMPLE-ID ::= WORDS

ID ::= TOKEN-ID | MIXFIX-ID

TOKEN-ID ::= TOKEN

TOKEN ::= WORDS | DOT-WORDS | SIGNS | DIGIT | QUOTED-CHAR

MIXFIX-ID ::= TOKEN-PLACES

TOKEN-PLACES ::= token-places TOKEN-OR-PLACE+

TOKEN-OR-PLACE ::= TOKEN | PLACE

A.2 Basic Speci�cations with Subsorts

SORT-ITEM ::= ... | SUBSORT-DECL | ISO-DECL | SUBSORT-DEFN

SUBSORT-DECL ::= subsort-decl SORT+ SORT

ISO-DECL ::= iso-decl SORT+

SUBSORT-DEFN ::= subsort-defn SORT VAR SORT FORMULA

ALTERNATIVE ::= ... | SUBSORTS

SUBSORTS ::= subsorts SORT+

ATOM ::= ... | MEMBERSHIP

MEMBERSHIP ::= membership TERM SORT

TERM ::= ... | CAST

CAST ::= cast TERM SORT

A.3. STRUCTURED SPECIFICATIONS A{5

A.3 Structured Speci�cations

SPEC ::= BASIC-SPEC | TRANSLATION | REDUCTION

| UNION | EXTENSION | FREE-SPEC | LOCAL-SPEC

| CLOSED-SPEC | SPEC-INST

TRANSLATION ::= translation SPEC RENAMING

RENAMING ::= renaming SYMB-MAP-ITEMS+

REDUCTION ::= reduction SPEC RESTRICTION

RESTRICTION ::= HIDDEN | REVEALED

HIDDEN ::= hidden SYMB-ITEMS+

REVEALED ::= revealed SYMB-MAP-ITEMS+

UNION ::= union SPEC+

EXTENSION ::= extension SPEC+

FREE-SPEC ::= free-spec SPEC

LOCAL-SPEC ::= local-spec SPEC SPEC

CLOSED-SPEC ::= closed-spec SPEC

SPEC-DEFN ::= spec-defn SPEC-NAME GENERICITY SPEC

GENERICITY ::= genericity PARAMS IMPORTED

PARAMS ::= params SPEC*

IMPORTED ::= imported SPEC*

SPEC-INST ::= spec-inst SPEC-NAME FIT-ARG*

FIT-ARG ::= FIT-SPEC | FIT-VIEW

FIT-SPEC ::= fit-spec SPEC SYMB-MAP-ITEMS*

FIT-VIEW ::= fit-view VIEW-NAME FIT-ARG*

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE

SYMB-MAP-ITEMS*

VIEW-TYPE ::= view-type SPEC SPEC

SYMB-ITEMS ::= symb-items SYMB-KIND SYMB+

SYMB-MAP-ITEMS ::= symb-map-items SYMB-KIND SYMB-OR-MAP+

SYMB-KIND ::= implicit | sorts-kind | ops-kind | preds-kind

SYMB ::= ID | QUAL-ID

QUAL-ID ::= qual-id ID TYPE

TYPE ::= OP-TYPE | PRED-TYPE

SYMB-MAP ::= symb-map SYMB SYMB

SYMB-OR-MAP ::= SYMB | SYMB-MAP

SPEC-NAME ::= SIMPLE-ID

VIEW-NAME ::= SIMPLE-ID

TOKEN-ID ::= ... | COMP-TOKEN-ID

MIXFIX-ID ::= ... | COMP-MIXFIX-ID

COMP-TOKEN-ID ::= comp-token-id TOKEN ID+

COMP-MIXFIX-ID ::= comp-mixfix-id TOKEN-PLACES ID+

A.4. ARCHITECTURAL SPECIFICATIONS A{6

A.4 Architectural Speci�cations

ARCH-SPEC-DEFN ::= arch-spec-defn ARCH-SPEC-NAME ARCH-SPEC

ARCH-SPEC ::= BASIC-ARCH-SPEC | ARCH-SPEC-NAME

BASIC-ARCH-SPEC ::= basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT

UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN

UNIT-DECL ::= unit-decl UNIT-NAME UNIT-SPEC UNIT-IMPORTED

UNIT-IMPORTED ::= unit-imported UNIT-TERM*

UNIT-DEFN ::= unit-defn UNIT-NAME UNIT-EXPRESSION

UNIT-SPEC-DEFN ::= unit-spec-defn SPEC-NAME UNIT-SPEC

UNIT-SPEC ::= UNIT-TYPE | SPEC-NAME | ARCH-UNIT-SPEC

| CLOSED-UNIT-SPEC

ARCH-UNIT-SPEC ::= arch-unit-spec ARCH-SPEC

CLOSED-UNIT-SPEC ::= closed-unit-spec UNIT-SPEC

UNIT-TYPE ::= unit-type SPEC* SPEC

RESULT-UNIT ::= result-unit UNIT-EXPRESSION

UNIT-EXPRESSION ::= unit-expression UNIT-BINDING* UNIT-TERM

UNIT-BINDING ::= unit-binding UNIT-NAME UNIT-SPEC

UNIT-TERM ::= UNIT-REDUCTION | UNIT-TRANSLATION | AMALGAMATION

| LOCAL-UNIT | UNIT-APPL

UNIT-TRANSLATION ::= unit-translation UNIT-TERM RENAMING

UNIT-REDUCTION ::= unit-reduction UNIT-TERM RESTRICTION

AMALGAMATION ::= amalgamation UNIT-TERM+

LOCAL-UNIT ::= local-unit UNIT-DEFN+ UNIT-TERM

UNIT-APPL ::= unit-appl UNIT-NAME FIT-ARG-UNIT*

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*

ARCH-SPEC-NAME ::= SIMPLE-ID

UNIT-NAME ::= SIMPLE-ID

A.5 Speci�cation Libraries

LIB-DEFN ::= lib-defn LIB-NAME LIB-ITEM*

LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN

| ARCH-SPEC-DEFN | UNIT-SPEC-DEFN

| DOWNLOAD-ITEMS

DOWNLOAD-ITEMS ::= download-items LIB-NAME ITEM-NAME-OR-MAP+

ITEM-NAME-OR-MAP ::= ITEM-NAME | ITEM-NAME-MAP

ITEM-NAME-MAP ::= item-name-map ITEM-NAME ITEM-NAME

ITEM-NAME ::= SIMPLE-ID

LIB-NAME ::= LIB-ID | LIB-VERSION

LIB-VERSION ::= lib-version LIB-ID VERSION-NUMBER

VERSION-NUMBER ::= version-number NUMBER+

LIB-ID ::= DIRECT-LINK | INDIRECT-LINK

DIRECT-LINK ::= direct-link URL

INDIRECT-LINK ::= indirect-link PATH

Appendix B

Abbreviated Abstract Syntax

The full grammar, de�ning the same (tree) language but using more non-
terminal symbols, is given in Appendix A.

The following nonterminal symbols correspond to lexical syntax, and are
left unspeci�ed in the abstract syntax: WORDS, DOT-WORDS, SIGNS, DIGIT,
DIGITS, NUMBER, QUOTED-CHAR, PLACE, URL, and PATH.

B.1 Basic and Subsorted Speci�cations

BASIC-SPEC ::= basic-spec BASIC-ITEMS*

BASIC-ITEMS ::= SIG-ITEMS

| free-datatype DATATYPE-DECL+

| sort-gen SIG-ITEMS+

| var-items VAR-DECL+

| local-var-axioms VAR-DECL+ FORMULA+

| axiom-items FORMULA+

SIG-ITEMS ::= sort-items SORT-ITEM+

| op-items OP-ITEM+

| pred-items PRED-ITEM+

| datatype-items DATATYPE-DECL+

SORT-ITEM ::= sort-decl SORT+

| subsort-decl SORT+ SORT

| subsort-defn SORT VAR SORT FORMULA

| iso-decl SORT+

OP-ITEM ::= op-decl OP-NAME+ OP-TYPE OP-ATTR*

| op-defn OP-NAME OP-HEAD TERM

OP-TYPE ::= total-op-type SORT-LIST SORT

| partial-op-type SORT-LIST SORT

SORT-LIST ::= sort-list SORT*

B{1

B.1. BASIC AND SUBSORTED SPECIFICATIONS B{2

OP-ATTR ::= assoc-op-attr | comm-op-attr | idem-op-attr

| unit-op-attr TERM

OP-HEAD ::= total-op-head ARG-DECL* SORT

| partial-op-head ARG-DECL* SORT

ARG-DECL ::= arg-decl VAR+ SORT

PRED-ITEM ::= pred-decl PRED-NAME+ PRED-TYPE

| pred-defn PRED-NAME PRED-HEAD FORMULA

PRED-TYPE ::= pred-type SORT-LIST

PRED-HEAD ::= pred-head ARG-DECL*

DATATYPE-DECL ::= datatype-decl SORT ALTERNATIVE+

ALTERNATIVE ::= total-construct OP-NAME COMPONENTS*

| partial-construct OP-NAME COMPONENTS+

| subsorts SORT+

COMPONENTS ::= total-select OP-NAME+ SORT

| partial-select OP-NAME+ SORT

| SORT

VAR-DECL ::= var-decl VAR+ SORT

FORMULA ::= quantification QUANTIFIER VAR-DECL+ FORMULA

| conjunction FORMULA+

| disjunction FORMULA+

| implication FORMULA FORMULA

| equivalence FORMULA FORMULA

| negation FORMULA

| true-atom | false-atom

| predication PRED-SYMB TERMS

| definedness TERM

| existl-equation TERM TERM

| strong-equation TERM TERM

| membership TERM SORT

QUANTIFIER ::= universal | existential | unique-existential

PRED-SYMB ::= PRED-NAME | qual-pred-name PRED-NAME PRED-TYPE

TERMS ::= terms TERM*

TERM ::= SIMPLE-ID

| qual-var VAR SORT

| application OP-SYMB TERMS

| sorted-term TERM SORT

| cast TERM SORT

| conditional TERM FORMULA TERM

OP-SYMB ::= OP-NAME | qual-op-name OP-NAME OP-TYPE

SORT ::= TOKEN-ID

OP-NAME ::= ID

PRED-NAME ::= ID

VAR ::= SIMPLE-ID

SIMPLE-ID ::= WORDS

B.2. STRUCTURED SPECIFICATIONS B{3

ID ::= TOKEN-ID | MIXFIX-ID

TOKEN-ID ::= TOKEN

MIXFIX-ID ::= TOKEN-PLACES

TOKEN-PLACES ::= token-places TOKEN-OR-PLACE+

TOKEN-OR-PLACE ::= TOKEN | PLACE

TOKEN ::= WORDS | DOT-WORDS | SIGNS | DIGIT | QUOTED-CHAR

B.2 Structured Speci�cations

SPEC ::= BASIC-SPEC

| translation SPEC RENAMING

| reduction SPEC RESTRICTION

| union SPEC+

| extension SPEC+

| free-spec SPEC

| local-spec SPEC SPEC

| closed-spec SPEC

| spec-inst SPEC-NAME FIT-ARG*

RENAMING ::= renaming SYMB-MAP-ITEMS+

RESTRICTION ::= hide SYMB-ITEMS+

| reveal SYMB-MAP-ITEMS+

SPEC-DEFN ::= spec-defn SPEC-NAME GENERICITY SPEC

GENERICITY ::= genericity PARAMS IMPORTED

PARAMS ::= params SPEC*

IMPORTED ::= imported SPEC*

FIT-ARG ::= fit-spec SPEC SYMB-MAP-ITEMS*

| fit-view VIEW-NAME FIT-ARG*

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE

SYMB-MAP-ITEMS*

VIEW-TYPE ::= view-type SPEC SPEC

SYMB-ITEMS ::= symb-items SYMB-KIND SYMB+

SYMB-MAP-ITEMS ::= symb-map-items SYMB-KIND SYMB-OR-MAP+

SYMB-KIND ::= implicit | sorts-kind | ops-kind | preds-kind

SYMB ::= ID | qual-id ID TYPE

TYPE ::= OP-TYPE | PRED-TYPE

SYMB-MAP ::= symb-map SYMB SYMB

SYMB-OR-MAP ::= SYMB | SYMB-MAP

SPEC-NAME ::= SIMPLE-ID

VIEW-NAME ::= SIMPLE-ID

TOKEN-ID ::= ... | COMP-TOKEN-ID

MIXFIX-ID ::= ... | COMP-MIXFIX-ID

COMP-TOKEN-ID ::= comp-token-id TOKEN ID+

COMP-MIXFIX-ID ::= comp-mixfix-id TOKEN-PLACES ID+

B.3. ARCHITECTURAL SPECIFICATIONS B{4

B.3 Architectural Speci�cations

ARCH-SPEC-DEFN ::= arch-spec-defn ARCH-SPEC-NAME ARCH-SPEC

ARCH-SPEC ::= basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT

| ARCH-SPEC-NAME

UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN

UNIT-DECL ::= unit-decl UNIT-NAME UNIT-SPEC UNIT-IMPORTED

UNIT-IMPORTED ::= unit-imported UNIT-TERM*

UNIT-DEFN ::= unit-defn UNIT-NAME UNIT-EXPRESSION

UNIT-SPEC-DEFN ::= unit-spec-defn SPEC-NAME UNIT-SPEC

UNIT-SPEC ::= UNIT-TYPE | SPEC-NAME | arch-unit-spec ARCH-SPEC

| closed-unit-spec UNIT-SPEC

UNIT-TYPE ::= unit-type SPEC* SPEC

RESULT-UNIT ::= result-unit UNIT-EXPRESSION

UNIT-EXPRESSION ::= unit-expression UNIT-BINDING* UNIT-TERM

UNIT-BINDING ::= unit-binding UNIT-NAME UNIT-SPEC

UNIT-TERM ::= unit-translation UNIT-TERM RENAMING

| unit-reduction UNIT-TERM RESTRICTION

| amalgamation UNIT-TERM+

| local-unit UNIT-DEFN+ UNIT-TERM

| unit-appl UNIT-NAME FIT-ARG-UNIT*

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*

ARCH-SPEC-NAME ::= SIMPLE-ID

UNIT-NAME ::= SIMPLE-ID

B.4 Speci�cation Libraries

LIB-DEFN ::= lib-defn LIB-NAME LIB-ITEM*

LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN

| ARCH-SPEC-DEFN | UNIT-SPEC-DEFN

| download-items LIB-NAME ITEM-NAME-OR-MAP+

ITEM-NAME-OR-MAP ::= ITEM-NAME | item-name-map ITEM-NAME ITEM-NAME

ITEM-NAME ::= SIMPLE-ID

LIB-NAME ::= LIB-ID | LIB-VERSION

LIB-VERSION ::= lib-version LIB-ID VERSION-NUMBER

VERSION-NUMBER ::= version-number NUMBER+

LIB-ID ::= direct-link URL | indirect-link PATH

Appendix C

Concrete Syntax

The relationship between the concrete syntax and the corresponding ab-
stract syntax is rather straightforward|except that mapping the use of
mix�x notation in a concrete ATOM to an abstract ATOM depends on the
declared operation and predicate symbols (although not on their pro�les).
Currently, the relationship is merely suggested by the use of the same non-
terminal symbols in the concrete and abstract grammars.

Examples of speci�cations illustrating the concrete syntax are given in Ap-
pendix E. Some prototype parsers for Casl have been implemented (see
the CoFI Tools task group web page).

C.1 Introduction

Concrete syntax involves both input syntax (for writing and editing, and
subsequent parsing) and display format (for browsing on the screen, and
publication on paper). The input syntax should preferably be easy to relate
to the display format, and suÆciently readable for use in (plain-text) e-mail
messages.

Section C.2 below provides a context-free grammar for the Casl input syn-
tax. It has been derived systematically from the `abbreviated' abstract syn-
tax grammar in Appendix B, except for the productions for mix�x formulae
and terms. The context-free grammar is ambiguous; Section C.3 explains
various precedence rules for disambiguation, and the intended grouping of
mix�x formulae and terms. Section C.4 speci�es the lexical symbols of the
concrete syntax. Section C.5 shows how comments and various kinds of
annotations may be written. Finally, Section C.6 introduces several anno-
tations used to provide literal syntax for numbers, strings, and lists.

C{1

C.2. CONTEXT-FREE SYNTAX C{2

C.2 Context-Free Syntax

The grammar in this section uses uppercase words for nonterminal symbols,
allowing also hyphens. All other characters stand for themselves, with the
following exceptions:

� `::=' and `|' are generally used as meta-notation, as in BNF;

� A string of characters enclosed in double quotation marks `"..."' al-
ways stands for the enclosed characters themselves;

� `N t...t N ' indicates one or more repetitions of the nonterminal
symbol N separated by the terminal symbol t (which is usually a
comma or semicolon);

� `N ...N ' is simply one or more repetitions of N (occasionally, N here
is a sequence of terminal and nonterminal symbols, such as `[SPEC]');

� `var/vars' indicates that the singular and plural forms may be used
interchangeably, and similarly for other keywords; `end/' indicates that
the use of `end' is optional, and similarly for semicolons: `;/'.

The following nonterminal symbols are for lexical syntax, and de�ned in Sec-
tion C.4: WORDS, DOT-WORDS, NO-BRACKET-SIGNS, DIGIT, DIGITS, NUMBER,
QUOTED-CHAR, URL, and PATH. Lexical analysis for Casl is generally indepen-
dent of the context-free parsing (apart from the recognition of URL and PATH,
which may appear in libraries but not within individual speci�cations).

Context-free parsing of Casl speci�cations according to the grammar in this
section yields a parse tree where terms and formulae occurring in axioms
and de�nitions have been grouped with respect to explicit parentheses and
brackets, but where the intended applicative structure has not yet been
recognized. A further phase of mix�x grouping analysis is needed, dependent
on the symbols declared in the speci�cation and parsing annotations, before
the parse tree can be mapped to a complete abstract syntax tree.

C.2.1 Basic Speci�cations with Subsorts

BASIC-SPEC ::= BASIC-ITEMS...BASIC-ITEMS | f g

BASIC-ITEMS ::= SIG-ITEMS

| free type/types DATATYPE-DECL ;...; DATATYPE-DECL ;/

| generated type/types DATATYPE-DECL ;...; DATATYPE-DECL ;/

| generated f SIG-ITEMS...SIG-ITEMS g ;/

| var/vars VAR-DECL ;...; VAR-DECL ;/

| var/vars VAR-DECL ;...; VAR-DECL

"." FORMULA "."..."." FORMULA ;/

| axiom/axioms FORMULA ;...; FORMULA ;/

C.2. CONTEXT-FREE SYNTAX C{3

SIG-ITEMS ::= sort/sorts SORT-ITEM ;...; SORT-ITEM ;/

| op/ops OP-ITEM ;...; OP-ITEM ;/

| pred/preds PRED-ITEM ;...; PRED-ITEM ;/

| type/types DATATYPE-DECL ;...; DATATYPE-DECL ;/

SORT-ITEM ::= SORT ,..., SORT

| SORT ,..., SORT < SORT

| SORT = f VAR : SORT "." FORMULA g
| SORT =...= SORT

OP-ITEM ::= OP-NAME ,..., OP-NAME : OP-TYPE

| OP-NAME ,..., OP-NAME : OP-TYPE , OP-ATTR ,..., OP-ATTR

| OP-NAME OP-HEAD = TERM

OP-TYPE ::= SOME-SORTS -> SORT | SORT

| SOME-SORTS ->? SORT | ? SORT

SOME-SORTS ::= SORT *...* SORT

OP-ATTR ::= assoc | comm | idem | unit TERM

OP-HEAD ::= (ARG-DECL ;...; ARG-DECL) : SORT | : SORT

| (ARG-DECL ;...; ARG-DECL) :? SORT | :? SORT

ARG-DECL ::= VAR ,..., VAR : SORT

PRED-ITEM ::= PRED-NAME ,..., PRED-NAME : PRED-TYPE

| PRED-NAME PRED-HEAD <=> FORMULA

| PRED-NAME <=> FORMULA

PRED-TYPE ::= SOME-SORTS | ()

PRED-HEAD ::= (ARG-DECL ;...; ARG-DECL)

DATATYPE-DECL ::= SORT "::=" ALTERNATIVE "|"..."|" ALTERNATIVE

ALTERNATIVE ::= OP-NAME (COMPONENT ;...; COMPONENT)

| OP-NAME (COMPONENT ;...; COMPONENT)?

| OP-NAME

| sort/sorts SORT ,..., SORT

COMPONENT ::= OP-NAME ,..., OP-NAME : SORT

| OP-NAME ,..., OP-NAME :? SORT

| SORT

VAR-DECL ::= VAR ,..., VAR : SORT

FORMULA ::= QUANTIFIER VAR-DECL ;...; VAR-DECL "." FORMULA

| FORMULA /\ FORMULA /\.../\ FORMULA

| FORMULA \/ FORMULA \/...\/ FORMULA

| FORMULA => FORMULA

| FORMULA if FORMULA

| FORMULA <=> FORMULA

| not FORMULA

| true | false

| def TERM

C.2. CONTEXT-FREE SYNTAX C{4

| TERM =e= TERM

| TERM = TERM

| TERM in SORT

| (FORMULA)

| MIXFIX...MIXFIX

QUANTIFIER ::= forall | exists | exists!

TERMS ::= TERM ,..., TERM

TERM ::= MIXFIX...MIXFIX | LITERAL

MIXFIX ::= NO-BRACKET-TOKEN | PLACE

| QUAL-PRED-NAME | QUAL-VAR-NAME | QUAL-OP-NAME

| MIXFIX : SORT

| MIXFIX as SORT

| MIXFIX when FORMULA else MIXFIX

| (TERMS)

| [TERMS] | []

| f TERMS g | f g

QUAL-VAR-NAME ::= (var VAR : SORT)

QUAL-PRED-NAME ::= (pred PRED-NAME : PRED-TYPE)

QUAL-OP-NAME ::= (op OP-NAME : OP-TYPE)

SORT ::= TOKEN-ID

OP-NAME ::= ID

PRED-NAME ::= ID

VAR ::= SIMPLE-ID

SIMPLE-ID ::= WORDS

ID ::= TOKEN-ID | MIXFIX-ID

TOKEN-ID ::= TOKEN

MIXFIX-ID ::= TOKEN-ID PLACE-TOKEN-ID ... PLACE-TOKEN-ID

| PLACE-TOKEN-ID ... PLACE-TOKEN-ID

PLACE-TOKEN-ID ::= PLACE TOKEN-ID

| PLACE

PLACE ::=

TOKEN ::= WORDS | DOT-WORDS | DIGIT | QUOTED-CHAR

| SIGNS

NO-BRACKET-TOKEN::= WORDS | DOT-WORDS | DIGIT | QUOTED-CHAR

| NO-BRACKET-SIGNS

SIGNS ::= NO-BRACKET-SIGNS | BRACKET-SIGNS

| NO-BRACKET-SIGNS BRACKET-SIGNS

BRACKET-SIGNS ::= BRACKET SIGNS

| BRACKET

BRACKET ::= [|] | f | g

C.2. CONTEXT-FREE SYNTAX C{5

C.2.2 Structured Speci�cations

SPEC ::= BASIC-SPEC

| SPEC RENAMING

| SPEC RESTRICTION

| SPEC and SPEC and...and SPEC

| SPEC then SPEC then...then SPEC

| free GROUP-SPEC

| local SPEC within SPEC

| closed GROUP-SPEC

| GROUP-SPEC

GROUP-SPEC ::= f SPEC g
| SPEC-NAME

| SPEC-NAME [FIT-ARG]...[FIT-ARG]

RENAMING ::= with SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS

RESTRICTION ::= hide SYMB-ITEMS ,..., SYMB-ITEMS

| reveal SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS

SPEC-DEFN ::= spec SPEC-NAME = SPEC end/

| spec SPEC-NAME SOME-GENERICS = SPEC end/

SOME-GENERICS ::= SOME-PARAMS | SOME-PARAMS SOME-IMPORTED

SOME-PARAMS ::= [SPEC]...[SPEC]

SOME-IMPORTED ::= given GROUPED-SPEC ,..., GROUPED-SPEC

FIT-ARG ::= SPEC fit SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS

| SPEC

| view VIEW-NAME

| view VIEW-NAME [FIT-ARG]...[FIT-ARG]

VIEW-DEFN ::= view VIEW-NAME : VIEW-TYPE end/

| view VIEW-NAME : VIEW-TYPE =

SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS end/

| view VIEW-NAME SOME-GENERICS : VIEW-TYPE end/

| view VIEW-NAME SOME-GENERICS : VIEW-TYPE =

SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS end/

VIEW-TYPE ::= GROUP-SPEC to GROUP-SPEC

SYMB-ITEMS ::= SYMB

| SOME-SYMB-KIND SYMB ,..., SYMB

SYMB-MAP-ITEMS ::= SYMB-OR-MAP

| SOME-SYMB-KIND SYMB-OR-MAP ,..., SYMB-OR-MAP

SOME-SYMB-KIND ::= sort/sorts | op/ops | pred/preds

SYMB ::= ID | ID : TYPE

TYPE ::= OP-TYPE | PRED-TYPE

SYMB-MAP ::= SYMB "|->" SYMB

SYMB-OR-MAP ::= SYMB | SYMB-MAP

SPEC-NAME ::= SIMPLE-ID

VIEW-NAME ::= SIMPLE-ID

TOKEN-ID ::= ... | TOKEN [ID ,..., ID]

C.2. CONTEXT-FREE SYNTAX C{6

C.2.3 Architectural Speci�cations

ARCH-SPEC-DEFN ::= arch spec ARCH-SPEC-NAME = ARCH-SPEC end/

ARCH-SPEC ::= BASIC-ARCH-SPEC | GROUP-ARCH-SPEC

GROUP-ARCH-SPEC ::= f ARCH-SPEC g | ARCH-SPEC-NAME

BASIC-ARCH-SPEC ::= unit/units UNIT-DECL-DEFN ;...; UNIT-DECL-DEFN ;/

result UNIT-EXPRESSION ;/

UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN

UNIT-DECL ::= UNIT-NAME : UNIT-SPEC

given GROUP-UNIT-TERM ,..., GROUP-UNIT-TERM

| UNIT-NAME : UNIT-SPEC

UNIT-DEFN ::= UNIT-NAME = UNIT-EXPRESSION

UNIT-SPEC-DEFN ::= unit spec SPEC-NAME = UNIT-SPEC end/

UNIT-SPEC ::= GROUP-SPEC

| GROUP-SPEC *...* GROUP-SPEC -> GROUP-SPEC

| arch spec GROUP-ARCH-SPEC

| closed UNIT-SPEC

UNIT-EXPRESSION ::= lambda UNIT-BINDING ;...; UNIT-BINDING "." UNIT-TERM

| UNIT-TERM

UNIT-BINDING ::= UNIT-NAME : UNIT-SPEC

UNIT-TERM ::= UNIT-TERM RENAMING

| UNIT-TERM RESTRICTION

| UNIT-TERM and...and UNIT-TERM

| local UNIT-DEFN ;...; UNIT-DEFN ;/ within UNIT-TERM

| GROUP-UNIT-TERM

GROUP-UNIT-TERM ::= f UNIT-TERM g
| UNIT-NAME

| UNIT-NAME [FIT-ARG-UNIT]...[FIT-ARG-UNIT]

FIT-ARG-UNIT ::= UNIT-TERM

| UNIT-TERM fit SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS

ARCH-SPEC-NAME ::= SIMPLE-ID

UNIT-NAME ::= SIMPLE-ID

C.2.4 Speci�cation Libraries

LIB-DEFN ::= library LIB-NAME LIB-ITEM...LIB-ITEM

LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN

| ARCH-SPEC-DEFN | UNIT-SPEC-DEFN

| from LIB-NAME

get ITEM-NAME-OR-MAP ,..., ITEM-NAME-OR-MAP end/

ITEM-NAME-OR-MAP::= ITEM-NAME | ITEM-NAME "|->" ITEM-NAME

ITEM-NAME ::= SIMPLE-ID

LIB-NAME ::= LIB-ID | LIB-ID VERSION-NUMBER

LIB-ID ::= URL | PATH

VERSION-NUMBER ::= version NUMBER "."..."." NUMBER

C.3. DISAMBIGUATION C{7

C.3 Disambiguation

The context-free grammar given in Section C.2 for input syntax is quite
ambiguous. This section explains various precedence rules for disambigua-
tion, and the intended grouping of mix�x formulae and terms (which is to
be recognized in a separate phrase, dependent on the declared symbols and
parsing annotations).

C.3.1 Precedence

At the level of structured speci�cations, ambiguities of grouping are resolved
as follows:

� `with', `reveal', and `hide' have the highest precedence;

� `within' has lower precedence;

� `and' has lower precedence than all the above; and

� `then' has the lowest precedence of all.

At the level of architectural speci�cations, ambiguities of grouping in unit
terms are resolved in the same way as for structured speci�cations. More-
over, a SPEC-NAME occurring as a UNIT-SPEC gives rise to just the SPEC-NAME
itself in the abstract syntax tree, rather than a UNIT-TYPE with an empty
list SPEC* of argument speci�cations.

Within a FORMULA, the use of pre�x and in�x notation for the logical connec-
tives gives rise to some potential ambiguities. These are resolved as follows:

� `not FORMULA' has the highest precedence;

� `FORMULA /\.../\ FORMULA' and `FORMULA \/...\/ FORMULA' both
have lower precedence, but may not be combined without explicit
grouping;

� The connectives `FORMULA => FORMULA', `FORMULA if FORMULA',
`FORMULA <=> FORMULA' all have even lower precedence. When re-
peated, `=>' groups to the right, whereas `if' groups to the left; `<=>'
may not be repeated without explicit grouping. These constructs may
not be combined without explicit grouping.

� `QUANTIFIER VAR-DECL;... . FORMULA' has the lowest precedence
of the logical constructs, with the last FORMULA extending as far to the
right as possible, e.g., `forall x:S . F => G' is disambiguated as
`forall x:S . (F => G)', not as `(forall x:S . F) => G'. More-
over, a quanti�cation may be used on the right of a logical connective
without grouping parentheses, e.g.,

C.3. DISAMBIGUATION C{8

`F <=> exists x:s . G <=> H' is parsed as
`F <=> (exists x:s . G <=> H)'.

The declaration1 of in�x, pre�x, post�x, and general mix�x operation sym-
bols may introduce further potential ambiguities, which are partially re-
solved as follows (remaining ambiguities have to be eliminated by explicit
use of grouping parentheses in terms, or by use of parsing annotations):

� Ordinary function application `OP-SYMB(TERMS)' has the highest prece-
dence.

� Applications of all post�x symbols have the next-highest precedence
within terms after ordinary function application. This extends to all
mix�x operation symbols of the form ` ... TOKEN', and to sorted
terms and casts.

� Applications of all pre�x symbols have the next-highest precedence
within terms after post�xes. This extends to all mix�x operation sym-
bols of the form `TOKEN ... '.

� Applications of in�x symbols have the next-highest precedence within
terms after pre�xes. This extends to all mix�x symbols of the form
` '. Mixtures of di�erent in�x symbols and iterations
of the same in�x symbol have to be explicitly grouped|although the
attribute of associativity implies a parsing annotation that allows it-
erated applications of that symbol to be written without grouping.

� The conditional `TERM when FORMULA else TERM' has the weakest
precedence within terms, and iterations such as:

T1 when F1 else T2 when F2 else T3

are implicitly grouped to the right:

T1 when F1 else (T2 when F2 else T3)

Various other techniques for allowing the omission of grouping parentheses
and/or list-separators in input (and display) are familiar from previous speci-
�cation and programming languages, e.g., user-speci�ed precedence (relative
or absolute), and the \o�side" rule. Moreover, not all parsers are expected to
implement full mix�x notation. Casl therefore allows parsing annotations

on (libraries of) speci�cations, to indicate the possible omission of grouping
parentheses, and the degree of use of mix�x notation. (Such annotations
are expected to apply uniformly to Casl sublanguages, and to most exten-
sions.) Parsing annotations may even override the rules given above for the
relative precedence of post�x, pre�x, and in�x symbols.

1Declarations occurring anywhere in the enclosing list of basic items are taken into
account when disambiguating the grouping of symbols in a term.

C.3. DISAMBIGUATION C{9

C.3.2 Mix�x Grouping Analysis

Note that ID is not an alternative of MIXFIX, since the notation for com-
pound identi�ers could be confused with mix�x notation involving square
brackets.

Mix�x grouping analysis of a speci�cation should be equivalent to context-
free parsing according to a derived grammar|obtained from the grammar in
Section C.2 by replacing the alternatives involving MIXFIX with alternatives
determined (partly) by the declared symbols, as follows:

FORMULA ::= ... | QUAL-PRED-NAME

| QUAL-PRED-NAME (TERMS)

TERM ::= ... | QUAL-VAR-NAME | QUAL-OP-NAME

| QUAL-OP-NAME (TERMS)

| TERM : SORT

| TERM as SORT

| TERM when FORMULA else TERM

| (TERM)

plus

TERM ::= ... | id

for each declared variable or constant name id , plus

TERM ::= id (TERMS)

for each declared operation symbol id of positive arity, plus

TERM ::= t1 TERM t2 ... TERM tn

for each declared mix�x operation symbol t1 t2 ... tn (with t1 and
tn possibly empty), plus

FORMULA ::= ... | id

for each declared predicate constant name id , plus

FORMULA ::= id (TERMS)

for each declared predicate symbol id of positive arity, plus

FORMULA ::= t1 TERM t2 ... TERM tn

for each declared mix�x predicate symbol t1 t2 ... tn (with t1 and
tn possibly empty).

It would be possible to obtain a �xed grammar for a sub-language of Casl
lacking mix�x notation in a similar way, using the appropriate kinds of ID

in place of the declared ids above. (It may be convenient to obtain all
these various grammars as extensions of a root grammar that is completely
uncommitted about the notation used for applications, etc.)

C.4. LEXICAL SYNTAX C{10

C.4 Lexical Syntax

This section de�nes the lexical syntax of WORDS, DOT-WORDS, NO-BRACKET-
SIGNS, DIGIT, DIGITS, NUMBER, and QUOTED-CHAR, which are used in Sec-
tion C.2, together with that of FRACTION, FLOATING, and STRING, which are
used in Section C.6. The lexical syntax of URL and PATH has not yet been
�nalized, and is left open.

Spaces and other layout characters terminate lexical symbols (except for
QUOTED-CHAR and STRING) and are otherwise ignored. The next lexical sym-
bol recognized is as long as possible.

WORDS ::= WORD ... WORD

DOT-WORDS ::= . WORDS

WORD ::= LETTER-P-D ... LETTER-P-D

LETTER-P-D ::= LETTER | "'" | DIGIT

LETTER ::= A | B | C | D | E | F | G | H | I | J | K | L | M

| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

| a | b | c | d | e | f | g | h | i | j | k | l | m

| n | o | p | q | r | s | t | u | v | w | x | y | z

| �A | �A | Â | ~A | �A | �A | � | C� | �E | �E | Ê | �E | �I

| �I | Î | �I | ~N | �O | �O | Ô | ~O | �O | � | �U | �U | Û

| �U | �Y | � | �a | �a | â | ~a | �a | �a | � | �c | �e | �e

| ê | �e | �� | �� | �̂ | �� | ~n | �o | �o | ô | ~o | �o | �

| �u | �u | û | �u | �y | �y

DIGIT ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

DIGITS ::= DIGIT DIGIT ... DIGIT

NUMBER ::= DIGIT | DIGITS

A WORDS must start with a LETTER, and must not be one of the reserved

keywords used in the context-free syntax in Section C.2. The (51) keywords
are:

and arch as assoc axiom axioms closed comm def else end exists

false fit forall free from generated get given hide idem if in

lambda library local not op ops pred preds result reveal

sort sorts spec then to true type types unit units

var vars version view when with within .

LETTER includes all the ISO Latin-1 national and accented letters except for
the Icelandic `eth' and `thorn'.

NO-BRACKET-SIGNS ::= NO-BRACKET-SIGN ... NO-BRACKET-SIGN

A NO-BRACKET-SIGNS must not be one of the following reserved symbols:

: :? ::= = => <=> . � | |-> \/ /\ :

C.4. LEXICAL SYNTAX C{11

These sequences of characters may however be used together with other
characters in a NO-BRACKET-SIGNS. For example, `==', `:=', and `||' is each
recognized as a complete NO-BRACKET-SIGNS. Note that identi�ers that start
or �nish with a NO-BRACKET-SIGNS need to be separated by (e.g.) a space
from adjacent reserved symbols: a sequence of characters such as ` #: ' is
always recognized as a single symbol, whereas ` # : ' is recognized as two
symbols.

Despite its use in the context-free syntax as a terminal symbol, a single char-
acter `<', `*', `?', `!', or `/' is also recognized as a complete NO-BRACKET-SIGNS.
The ISO Latin-1 characters for product `�', negation `:', and raised dot `�'
are recognized as alternatives for the terminal symbols `*', `not', and `.',
respectively.

NO-BRACKET-SIGN ::= + | - | * | / | \ | & | = | < | >

| ! | ? | : | . | $ | @ | # | ^ | ~

| Æ | � | � | � | $ | c | � | { | x
| 1 | 2 | 3 | � | 6c | Æ | : | � | "|"

Note that NO-BRACKET-SIGN does not include the following ASCII signs:

() [] f g ; , ` " %

nor the ISO Latin-1 signs for general currency, yen, broken vertical bar,
registered trade mark, masculine and feminine ordinals, left and right angle
quotes, fractions, soft hyphen, acute accent, cedilla, macron, and umlaut.

QUOTED-CHAR ::= "'" CHAR "'"

CHAR ::= " " | ! | '\"' | # | $ | ...

| "\'" | ... | "\\" | ...

| \n | \t | \r | ...

| \000 ... | \255

FRACTION ::= NUMBER . NUMBER

FLOATING ::= NUMBER "E" OPT-SIGN NUMBER

| FRACTION "E" OPT-SIGN NUMBER

OPT-SIGN ::= + | - |

STRING ::= '"' '"'

| '"' CHAR ... CHAR '"'

Pairs of single quotes `'...'' (with no spaces between them) are used in the
above productions to indicate symbols containing the double quote character
`"', and vice versa.

C.5. COMMENTS AND ANNOTATIONS C{12

C.5 Comments and Annotations

Both comments and annotations can be used to provide auxiliary informa-
tion that gets attached to the abstract syntax trees of Casl speci�cations.
The start of comments and annotations is always indicated by a percent
character `%' followed immediately by a non-space character.

Comments may be inserted anywhere2 (between other lexical symbols) in
Casl speci�cations. Their only signi�cance is for the human reader; they are
completely ignored by the semantics, and by tools, in general. Formatters
are, of course, expected to display comments.

In contrast, annotations may only be inserted at particular places in Casl

speci�cations, and they may be signi�cant for particular tools (including
parsers and formatters). Currently, the only annotations whose syntax has
been decided are for tagging constructs with labels, and for changing the
display of declared symbols. Formatters are expected to display the former,
whereas the latter are only shown indirectly, by the e�ect that they have.

The further annotations to be provided concern parsing (precedence infor-
mation that allows omission of grouping parentheses when using mix�x nota-
tion in terms) and the semantic relationship between parts of speci�cations.

C.5.1 Comments

A comment starts with `%%'. It is terminated either by another `%%' on the
same line, or by a subsequent line that starts with some symbol other than
`%%' (ignoring spaces). Thus the usual pattern is:

CASL symbols...%% first comment line...

%% maybe more comment lines...

%% last comment line... %% CASL symbols...

allowing also a short comment to occur in the middle of a line:

CASL symbols...%% short comment... %% CASL symbols...

A comment applies to the longest preceding complete construct (ignoring
intervening separators such as semicolons), if there is one, and otherwise to
the smallest enclosing construct. Thus a comment between BASIC-ITEMs in

2It is unclear how to cope with the possibility of comments occurring everywhere using
standard parser-generators, when the comments are not to be discarded by attached to
abstract syntax trees. Should the positions where comments may occur be (severely)
restricted, as foreseen for annotations? See the Tools Note T-7 [Sch99] with further
analysis of the problem and for a report on how it has been solved in the INKA front end.

C.5. COMMENTS AND ANNOTATIONS C{13

a list thus applies to just the preceding BASIC-ITEM (rather than to the whole
preceding list) regardless of whether it comes before or after the separating
semicolon. A comment at the start of the list applies to the whole list. An
exception to the above is a comment that �nishes with `:', which always
applies to the longest following complete construct.

Text that is `commented-out' in a Casl speci�cation is indicated by a com-
ment of the form `%(...%)'; it is not shown at all in the display format.
Note that comments introduced by `%%' may occur within `%(...%)', and
vice versa; but further nesting of comments is not possible.

The body of comment is generally input as plain (ISO Latin-1) text. Casl
syntax within comments is indicated by `<CASL>...</CASL>' (each line still
starting with `%%'); such syntax is parsed and displayed as usual, but with
each line in its display pre�xed by `%%'. (The `<...>...</...>' notation
for delimiting constructs comes from SGML and HTML; the `/' in the closing
delimiter may be read suggestively as \over".)

Instructions to formatters can be embedded in comments in the same way
as Casl syntax, using the name of the formatting language instead of
`CASL' in the delimiters `<CASL>...</CASL>'. Thus for LATEX, one uses
`<latex>...</latex>'; other envisaged formatters are for HTML and RTF.
Each formatter ignores the instructions for the alternative formatters.

Formatting languages cannot be nested: the start of a new language implies
the end of the current one. The name of the language may be omitted
in the terminator, if desired, writing merely `</>'. The end of a comment
implicitly terminates the current language.

Typically, one may want to specify special instructions for one or more par-
ticular formatters, leaving all other formatters to display some plain text as
best they can; this may be written e.g. `<latex>...<html>...<other>...</>',
thus:

... %% This is a fancy comment using <latex>\LaTeX<other>LaTeX</>

%% and continuing with plain text

C.5.2 Annotations

C.5.2.1 Label Annotations

A label annotation is of the form `%[ID,...,ID]' or `%[NNUMBER]'. It may
be written immediately before a FORMULA in a BASIC-ITEMS construct, and
immediately before an ALTERNATIVE in a DATATYPE-DECL.

C.5. COMMENTS AND ANNOTATIONS C{14

C.5.2.2 Display Annotations

A display annotation is of the form `%!...%!'. It associates a particular
input symbol (an ID) with formatting instructions for its display, using the
same notation for delimiting formatting languages as used for comments.

When the display annotation immediately follows a declared ID in a sort,
operation, or variable declaration, the input symbol concerned is taken to
be that ID, and the body of the display annotation gives the formatting
instructions. E.g.,

... div %!<latex>\div<html>÷%!

determines how the ID input as `div' is to be displayed by LATEX and HTML
formatters (�), with other formatters by default displaying the input symbol
as written.

An explicit `<other>' part can be used to provide abbreviations, e.g.,

... VLSI %!<other>Very_Long_Simple_Identifier%!

The input symbol whose display is to be a�ected may also be indicated
explicitly in the display annotation, which may then be inserted at any
point in a Casl speci�cation, e.g.,

... %! div<latex>\div<html>÷%!

(The space following the opening `%!' is optional, except when the input
symbol starts with a `<'.)

The notation for display annotations with implicit input symbols could be
made more concise by letting <latex> be implied by an initial `$' or `\', and
<html> be implied by an initial `&'. E.g.,

... div %!\div ÷%!

Note that readability is not a crucial issue here, since display annotations
are not themselves to be displayed, and can be seen only when using an
editor on the input syntax.

Finally, display annotations generalize to formatting mix�x notation by in-
terpreting the place-holder ` ' as such in the formatting instructions, e.g.,

... sum__to__ %!<latex>\sum_f__g^f__g<html>SUM<sub>__<sup>__%!

C.5. COMMENTS AND ANNOTATIONS C{15

This indicates the display not only for the mix�x operation symbol per

se, but also for its application to argument terms (the place-holders being
replaced by the arguments in the same order as input). If needed, LATEX-
style notation for argument positions `#n' could be provided too.

C.5.2.3 Parsing Annotations

These annotations, applicable to an entire library, are to allow users to
specify the precedence of operation symbols, and the signi�cance of layout
in the so-called \o�side" rule. Their primary purpose is to allow the omission
of grouping parentheses and/or list separators in the input; but formatters
may also exploit them to avoid superuous parentheses in the display.

A set of parsing annotations has been proposed in Note L-11 [RM99] (see
also Note T-6 [Mos98a]). The following have been approved:

� Annotations on Operator Precedences: The proposal was accepted
with the amendment that operator lists of more than one item are to
be grouped by {...}..

� Annotations on Associativity: `%left assoc' and `%right assoc' were
both accepted.

These annotations, applicable to an entire library, are to allow users to
specify the precedence of operation symbols, and the signi�cance of layout
in the so-called \o�side" rule. Their primary purpose is to allow the omission
of grouping parentheses and/or list separators in the input; but formatters
may also exploit them to avoid superuous parentheses in the display.

A prededence annotation is written:

%prec fid1; : : : ; idng < fidn+1; : : : ; idn+kg

Here each idi is an (unquali�ed) mix�x operation symbol of the form
` '. The relation speci�es that for 1 � i � n the sym-
bol idi has lower priority (i.e., binds weaker) than the symbol idj ; where
n + 1 � j � n + k: In case that there is just one operation symbol, the
grouping braces may be omitted.

It is also possible to specify that two mix�x operation symbols id1 and
id2 (which need not to be of form ` ') are not allowed to
be combined without explicit grouping parentheses This is done using an
annotation:

%prec fid1; : : : ; idng <> fidn+1; : : : ; idn+kg

In case that there is just one operation symbol, the grouping braces may be
omitted.

C.5. COMMENTS AND ANNOTATIONS C{16

The precedence annotations determine a pre-order, which is obtained in the
following way:

1. Expand all precedence relations into binary relations, i.e.:

� from annotations of the form fid1; : : : ; idng < fidn+1; : : : ; idn+kg
we get f(idi; idj) j 1 � i � n; n + 1 � j � n + kg, and

� from annotations of the form fid1; : : : ; idng <> fidn+1; : : : ; idn+kg
we get f(idi; idj); (idj ; idi) j 1 � i � n; n + 1 � j � n + kg:

2. Take the union of all declared expanded precedence relations with the
prede�ned precedences listed in Section C.3.1.

3. Take the reexive transitive closure of this union.

If two symbols occurring in a term of atomic formula are equivalent (i.e.
related in both directions) or incomparable (i.e. related in no direction) in
the precedence relation, their grouping has to be explicitly speci�ed by using
parentheses.

There are two associativity annotations, `%left assoc' and `%right assoc'.
They may be used immediately after an operation or predicate declaration.
For example, declaring + to be left associative means that t1 + t2 + t3
is parsed as (t1 + t2) + t3, while declaring it to be right associative leads
to t1 + (t2 + t3). If there is no associativity annotation for a mix�x sym-
bol, it is not allowed to repeat that symbol without explicit grouping using
parentheses.

For precedence and associativity annotations, we adopt non-linear visibil-
ity, that is, they are visible in the whole enclosing basic speci�cation (cf.
Section C.3.1).

Precedence annotations interact with structured speci�cations in the same
way as the subsorting relation. That is, for renamings and restrictions, the
precedence relation is lifted along the renaming or restriction. For unions
and extensions, the precedence relations are united. Note that in the case
that there are conicting precedence annotations this may lead to equivalent
symbols in the union. In this case these symbols cannot be combined without
explicit grouping.

Associativity annotations are translated along renamings and restrictions
and united along unions and extensions in the same way as the operations
they refer to.

C.5. COMMENTS AND ANNOTATIONS C{17

C.5.2.4 Semantic Annotations

These annotations are used to express known (or presumed) features of the
semantics of the speci�cation, e.g., that an extension is `conservative', or
that certain formulae are consequences of the speci�cation.

A set of semantic annotations has been proposed in Note L-11 [RM99]. The
following have been approved:

� The annotation `%cons' was accepted with the following two supple-
ments on its description in Note L-11: the annotation is left associa-
tive; and the annotation may not be used in case of an import.

An annotation `%imply' was considered as a desirable alternative to
`%cons', and is being considered further.

� The annotation `%def' was accepted. Note that if the syntax is of a
restricted form, then tools can statically prove the associated proof
obligation, e.g. as in the the HOL proof system.

These annotations are used to express known (or presumed) features of the
semantics of the speci�cation, e.g., that an extension is `conservative', or
that certain formulae are consequences of the speci�cation.

The annotation `%cons' may immediately follow either:

� a `then' keyword within an EXTENSION, in which case, let SP be the
part of the EXTENSION just up to, but excluding the annotated `then',
and let SP 0 be the speci�cation immediately following the `then'; or

� the equals sign within a SPEC-DEFN, in which case, let SP be the union
of the imports, extended by the union of the parameters, and let SP 0

be the body of the speci�cation de�nition.

The annotation expresses that SP 0 is a conservative extension of SP , i.e.
all SP -sentences that follow from (SP then SP 0) already follow from SP
alone.

The annotation `%def' may occur at the same places as the annotation
`%cons'. It expresses that SP 0 is a de�nitional extension of SP , i.e. each
model of SP can be uniquely extended to a model of (SP then SP 0) (this
implies a bijective correspondence between the two model classes). Note
that `%def' is strictly stronger than the `%cons' annotation.

An annotation `%implies' that allows to specify the intended consequences
of a speci�cation is being considered.

C.6. SYNTAX FOR LITERALS C{18

C.6 Syntax for Literals

In this section, several annotations for operations are introduced that can
be used to provide a literal syntax for numbers, strings and lists. These
annotations can occur just after a SIG-ITEM.

C.6.1 Literal syntax for numbers

LITERAL ::= NNUMBER

The annotation for declaring an operation to be used for concatenation of
digits within a number is written `%number f '. Only one such annotation
within a speci�cation SPEC is allowed, and f must have been declared as a
binary operation.

The annotation has the e�ect that an NNUMBER of the form d1 : : : dn (where
n > 1 and each di is a DIGIT) is translated to the (abstract syntax of) the
term f(f(: : : f(t1; t2) : : : ; tn�1); tn), where ti is the abstract syntax tree for
di.

Vice versa, an abstract syntax tree corresponding to a term of the above
form which is maximal (i.e., it is not a subterm of a larger term of the same
form) is expected to be printed as d1 : : : dn.

If there is no `%number' annotation, then an NNUMBER is not recognized as a
well-formed LITERAL.

LITERAL ::= ... | FRACTION | FLOATING

The annotation for declaring the operations used for evaluating the decimal
point and the exponentiation `E' within FRACTION or a FLOATING is written
`%floating f g '. Only one such annotation within a speci�cation SPEC is
allowed, and f and g must have been declared as binary operations.

The annotation has the e�ect that a FRACTION of the form n1:n2 (where each
ni is a NUMBER) is translated to the (abstract syntax of) the term f(t1; t2),
where ti is the abstract syntax tree for ni, i = 1; 2.

Similarly, a FLOATING of the form `n1En2 ' (where n1 is a NUMBER or a
FRACTION and n2 is of form OPT-SIGN NUMBER) is translated to the (ab-
stract syntax of) the term g(t1; t2), where ti is the abstract syntax tree for
ni, i = 1; 2.

Vice versa, an abstract syntax tree corresponding to a term of one the above
forms which is maximal (i.e., it is not a subterm of a larger term of the same
form) is expected to be printed as n1:n2 or n1En2, respectively.

C.6. SYNTAX FOR LITERALS C{19

If there is no `%floating' annotation, then neither a FRACTION nor a FLOATING
is recognized as a well-formed LITERAL.

C.6.2 Literal syntax for strings

LITERAL ::= ... | STRING

The annotation for declaring an operations for the empty string and for
concatenation of a character with a string is written `%string c f '. Only
one such annotation within a speci�cation SPEC is allowed, and c must have
been declared as a constant, while f must have been declared as a binary
operation.

The annotation has the e�ect that an STRING of the form `"c1 ...cn"'
(where n � 0 and each ci is a CHAR) is translated to the (abstract syntax of)
the term f(t1; f(t2; : : : f(tn; c) : : :)), where ti is the abstract syntax tree for
the QUOTED-CHAR `'ci''.

Vice versa, an abstract syntax tree corresponding to a term of the above
form which is maximal (i.e., it is not a subterm of a larger term of the same
form) is expected to be printed as `"c1 ...cn"'.

If there is no `%string' annotation, then a STRING is not recognized as a
well-formed LITERAL.

C.6.3 Literal syntax for lists

The annotation for declaring a list-like syntax is written `%list b1 b2
c f '. b1 and b2 are SIGNS, c must have been declared as a constant, while
f must have been declared as a binary operation.

The attribute leads to an extension of the syntax for LITERALs:

LITERAL ::= ... | b1 b2

| b1 TERM , ... , TERM b2

A list of the form `b1 t1; : : : ; tn b2' (where n � 0 and each ti is a TERM) is
translated to the (abstract syntax of) the term f(u1; f(u2; : : : f(un; c) : : :)),
where ui is the abstract syntax tree for ci.

Vice versa, an abstract syntax tree corresponding to a term of the above
form which is maximal (i.e., it is not a subterm of a larger term of the same
form) is expected to be printed as `b1 t1; : : : ; tn b2'.

Appendix D

Display Format

This appendix indicates how each input symbol is to be displayed when
formatted for printing using LATEX, as well as for web browsing using HTML.
A LATEXpackage implementing this display format is available [Mos98b].

D.1 Mathematical Symbols

The input symbols in the following table are to be displayed as the mathe-
matical symbols shown below them.

* -> forall exists /\ \/ => <=> not in . |-> lambda

� ! 8 9 ^ _) , : 2 � 7! �

When a mathematical symbol is not available (e.g., when browsing HTML
on WWW) the input syntax for it may be displayed instead. Moreover,
characters whose display format is in ISO Latin-1 may be used for input.
This allows the direct input of the symbols displayed as `:' and `�' (also `�'
may be input as a raised dot), and ensures that the text of a speci�cation
as shown by a WWW browser is valid input syntax (at least in the absence
of display annotations).

D.2 Keywords

Only keywords that indicate speci�cation structure are displayed boldface;
all keywords occurring in a FORMULA, an ATTRIBUTE, or an ALTERNATIVE are
displayed in the same italic font as identi�ers.

D{1

D.3. IDENTIFIERS D{2

D.3 Identi�ers

Identi�ers for sorts, operations, predicates, and variables are generally dis-
played with letters in italic: f , x , Very Long Identi�er . Non-letter charac-
ters in identi�ers are displayed as faithfully as practically possible.

Names for speci�cations, views, and libraries are displayed with the letters
in the Small-Caps font when available, and otherwise in ordinary upper
and lower case. Names for units are displayed in the same way as variables.

D.4 Comments and Annotations

Comments are generally displayed in the same font as ordinary informal
text that might appear before and after a Casl speci�cation (but note that
this may be overruled by formatting instructions occurring in the comment
text).

The display of a comment need not preserve the original line-breaks of the
input; but each line of the displayed comment must always start with `%%'.

By default, annotations other than labels are not displayed directly at all.
Display annotations generally a�ect the formatting of identi�ers, but the
annotations themselves are not shown.

When tools have modes or switches that cause certain annotations to be
displayed, their input syntax should be shown.

Appendix E

Examples

This appendix illustrates the concrete syntax of speci�cations in Casl (al-
though not all features of Casl, nor all styles of speci�cations supported by
Casl, are covered).

The examples are shown only in the display format, but the intended input
syntax should in general be easy to deduce|in fact, it should be the same
text as displayed when browsing the HTML-formatted version of this docu-
ment (modulo display annotations, which are needed for displaying mathe-
matical symbols such as [, as well as for reserved input tokens such as `.').
The input syntax of the examples is also available by FTP1.

1ftp://ftp.brics.dk/Projects/CoFI/Documents/CASL/Examples/

E{1

E.1. SIMPLE STRUCTURED SPECIFICATIONS E{2

E.1 Simple Structured Speci�cations

E.1.1 Partial Order

spec Partial Order =
sort Elem

pred � : Elem � Elem

vars x ; y ; z : Elem
� x � x

� x = y if x � y ^ y � x

� x � z if x � y ^ y � z

E.1.2 Monoid

spec Monoid =
sort Elem

ops n : Elem;
� : Elem � Elem ! Elem; assoc; unit n

%% Alternatively, just specify the corresponding axioms:
vars x ; y ; z : Elem
� n � x = x

� x � n = x

� (x � y) � z = x � (y � z)

E.1.3 Nat

spec Nat =
free
f sorts Nat ;

Zero;Pos < Nat

ops zero : Zero;
succ : Nat ! Pos g

then
op pre : Pos ! Nat

var x : Nat
� pre(succ x) = x

then local
pred odd : Nat
var x : Nat
� :odd zero

� odd(succ x) , :odd x

within sort Odd = fn : Nat � odd ng

E.2. GENERIC STRUCTURED SPECIFICATIONS E{3

E.1.4 Elem

spec Elem =
sort Elem

E.2 Generic Structured Speci�cations

E.2.1 Set1

spec Set1 [Elem] =
free
f type Set [Elem] ::= fg j f g(Elem) j [(Set [Elem];Set [Elem])
op [: Set [Elem]� Set [Elem] ! Set [Elem];

assoc; comm; idem; unit fg
g

E.2.2 Set2

spec Set2 [Elem] =
Set1 [Elem]

then
pred 2 : Elem � Set [Elem]
vars a; b : Elem; s; t : Set [Elem]
� :a 2 fg
� a 2 fbg , a = b

� a 2 (s [t) , (a 2 s) _ (a 2 t)

E.2.3 List

spec List [Elem] =
free type List [Elem] ::= nil j cons(�rst :?Elem; rest :?List [Elem])
op ++ : List [Elem]� List [Elem] ! List [Elem]; assoc; unit nil
vars e : Elem; l ; l 0 : List [Elem]
axiom

cons(e; l) ++ l 0 = cons(e; l ++ l 0)
op reverse : List [Elem] ! List [Elem]
axioms

reverse(nil) = nil ;
reverse(cons(e; l)) = reverse(l) ++ cons(e;nil)

end

E.2. GENERIC STRUCTURED SPECIFICATIONS E{4

E.2.4 List with Order

spec List with Order [Partial Order] =
List [sort Elem]

then
ops

insert : Elem � List [Elem] ! List [Elem];
order [�] : List [Elem] ! List [Elem]

vars x ; y : Elem; l : List [Elem]
axioms

order [�](nil) = nil ;
order [�](cons(x ; l)) = insert(x ; order [�](l));
insert(x ;nil) = cons(x ;nil);
x � y) insert(x ; cons(y ; l)) = cons(x ; insert(y ; l));
:(x � y)) insert(x ; cons(y ; l)) = cons(y ; insert(x ; l))

hide insert

end

E.2.5 Nat List with Reverse Orders

spec Ordered Nat =
Nat then
preds � ; � : Nat �Nat

vars m;n : Nat
� zero � n

� :(succ m � zero)
� succ m � succ n , m � n

� m � n , n � m

end

spec Nat List with Reverse Orders =
List with Order [Ordered Nat �t Elem 7! Nat , � 7! �]

and
List with Order [Ordered Nat �t Elem 7! Nat , � 7! �]

then
axiom 8l : List [Nat] � order [�](l) = reverse(order [�](l))

end

E.2. GENERIC STRUCTURED SPECIFICATIONS E{5

E.2.6 Non Empty List

spec Non Empty List [Elem] =
free type NeList [Elem] ::= sort Elem j (Elem;NeList [Elem])
ops

�rst : NeList [Elem] ! Elem;
rest : NeList [Elem] !? NeList [Elem]

vars e : Elem; l : NeList [Elem]
axioms

�rst(e) = e; �rst(e l) = e;
:def rest(e); rest(e l) = l

end

E.2.7 Path

spec Path =
Non Empty List [sort Name]
with NeList [Name] 7! Path;

7! = ;
�rst 7! the �rst name of ;
rest 7! the last part of

then
ops the �rst part of : Path !? Path;

the last name of : Path ! Name

vars n : Name; p : Path
axioms

def (the �rst part of p) , :(p 2 Name);
:(p 2 Name))
the �rst part of (n=p)

e
= n=the �rst part of p;

p 2 Name) the �rst part of (n=p)
e
= n;

the last name of n = n;
the last name of (n=p) = the last name of p

end

E.2. GENERIC STRUCTURED SPECIFICATIONS E{6

E.2.8 File

%% Name = . . .

%% Content = . . .

spec File =
Name

and
Content

then generated type File ::=< : > (the name of : Name;
the content of : Content)

%% The `.' above is to be produced by a display annotation
end

E.2.9 List of List of List of Nat

view Nat as Elem : Elem to Nat = Elem 7! Nat

view List as Elem [Elem] : Elem to List [Elem] = Elem 7! List [Elem]

spec List of List of List of Nat =
List [view List as Elem [view List as Elem [view Nat as Elem]]]

E.2.10 Nat List with Order

view Ordered Nat as Partial Order

: Partial Order to Ordered Nat = Elem 7! Nat

%% Ordered Nat as Partial Order can be seen as the requirement
%% that Ordered Nat indeed speci�es a partial order. Thus de�ning the
%% view would be signi�cant even if the following instantiation were
%% to be omitted.

spec Nat List With Order =
List With Order [view Ordered Nat as Partial Order]

E.3. ARCHITECTURAL SPECIFICATIONS E{7

E.2.11 Bounded Nat List

spec Bounded List [Elem] [op bound : Nat] given Nat =
List [Elem] and Ordered Nat

then
op length : List [Elem] ! nat

vars e : Elem; l : List [Elem]
axioms

length(nil) = zero;
length(cons(e; l)) = succ length(l)

sort Bounded List [Elem] = fl : List [Elem] � length(l) � boundg
type Bounded List [Elem] ::= nil j cons(�rst :?Elem;

rest :?Bounded List [Elem])?
%% The properties of the operations on Bounded List [Elem]
%% are determined by their overloadings on List [Elem]

end

spec Bounded Nat List [op bound : Nat] =
Bounded List [view Nat as Elem] [op bound : Nat]

E.3 Architectural Speci�cations

%% The example at the end of this section illustrates the
%% di�erence between the structure of speci�cations and
%% the architectural speci�cation of structure.

E.3.1 Num

spec Num =
sort Num

ops 0 : Num;
succ : Num ! Num

end

E.3.2 Num Monoid

spec Num Monoid =
Monoid with Elem 7! Num, n 7! 0 , � 7! +

E.3. ARCHITECTURAL SPECIFICATIONS E{8

E.3.3 Add Num

spec Add Num =
Num and Num Monoid

then
axiom 8x ; y : Num � x + succ(y) = succ(x + y)

end

E.3.4 Add Num Efficiently

spec Add Num Efficiently =
generated type Num ::= 0 j 1 j 0 (Num) j 1 (Num)
ops + ; ++ : Num �Num ! Num

vars x ; y : Num
axioms

0 0 = 0 ; 0 1 = 1 ;
x 0 + y 0 = (x + y) 0 ; x 0 ++ y 0 = (x + y) 1 ;
x 0 + y 1 = (x + y) 1 ; x 0 ++ y 1 = (x ++ y) 0 ;
x 1 + y 0 = (x + y) 1 ; x 1 ++ y 0 = (x ++ y) 0 ;
x 1 + y 1 = (x ++ y) 0 ; x 1 ++ y 1 = (x ++ y) 1
%% + is binary addition;
%% ++ is binary addition with carry

end

E.3.5 Efficient Add Num

%% It is more eÆcient to implement successor in terms of
%% (binary) addition, while it is easier to specify addition
%% in terms of successor than in terms of binary addition.
%% Thus, the structure of the implementation di�ers from
%% the structure of the speci�cation:

arch spec Efficient Add Num =
units
N : Add Num Efficiently;
M : f op succ(n : Num) : Num = n + 1 g given N

result
M hide 1 ; 0 ; 1 ; ++

end

%% We have now that Efficient Add Num is a re�nement of Add Num.

